Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A previously unknown abiotic humification pathway which is highly accelerated in frozen solution containing phenolic compounds and nitrite was investigated and proposed. The production of humic-like acids (HLA) and fulvic-like acids (FLA) was observed in the frozen solution (-20 °C) whereas it was negligible in aqueous solution (20 °C). Inorganic nitrogen was transformed into organic nitrogen during the humification process. Mass spectrometry (MS) and elemental analyses, including pyrolysis-GC/MS and FT-ion cyclotron resonance/MS, showed that humification products (HLA and FLA) have chemical structures and compositions similar to nature humic substances. The enhanced humification reaction could be attributed to the freeze-concentration effect, whereby nitrite ions in the unfrozen grain boundary region are transformed into nitrosonium ions which oxidize phenols to phenolic radicals. Confocal Raman microscopy confirmed that catechol and nitrite ions are preferentially concentrated at the ice grain boundary and electron paramagnetic resonance spectroscopic analysis of catechol/nitrite solution detected the phenolic radicals only in frozen solution, not in aqueous solution. The freezing-induced generation of phenolic radicals should lead to the formation of humic-like substances through polymerization. This study identifies and proposes a new humic formation pathway that might work as a model abiotic "bottom-up" mechanism in frozen environmental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.9b00950 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!