An optical and non-invasive method to detect the accumulation of ubiquitin chains.

Cell Biol Int

Laboratory of Physiological Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan.

Published: December 2019

The accumulations of excess amounts of polyubiquitinated proteins are cytotoxic and frequently observed in pathologic tissue from patients of neurodegenerative diseases. Therefore, optical and non-invasive methods to detect the increase of the amounts of polyubiquitinated proteins in living cells is a promising strategy to find out symptoms and environmental cause of neurodegenerative diseases, also for identifying compounds that could inhibit gathering of polyubiquitinated proteins. Therefore, we generated a pair of fluorescent protein [Azamigreen (Azg) and Kusabiraorange (Kuo)] tagged ubiquitin on its N-terminus (Azg-Ub and Kuo-Ub) and developed an Azg/Kuo-based Fluorescence Resonance Energy Transfer (FRET) assay to estimate the amount of polyubiquitin chains in vitro and in vivo. The FRET intensity was attenuated in the presence of ubiquitin-activating enzyme inhibitor, PYR-41, indicating that both fluorescent ubiquitin is incorporated into ubiquitin chains likewise normal ubiquitin. The FRET intensity was enhanced by the addition of the proteasome inhibitor, MG-132, and was reduced in the presence of the autophagy activator Rapamycin, designating that ubiquitin chains with fluorescent ubiquitin act as the degradation signal equally with normal ubiquitin chains. In summary, the above optical methods provide powerful research tools to estimate the amounts of polyubiquitin chains in vitro and in vivo, especially non-invasively in living cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbin.11186DOI Listing

Publication Analysis

Top Keywords

ubiquitin chains
16
polyubiquitinated proteins
12
optical non-invasive
8
ubiquitin
8
amounts polyubiquitinated
8
neurodegenerative diseases
8
living cells
8
polyubiquitin chains
8
chains vitro
8
vitro vivo
8

Similar Publications

UBE2Q2 promotes tumor progression and glycolysis of hepatocellular carcinoma through NF-κB/HIF1α signal pathway.

Cell Oncol (Dordr)

January 2025

Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, PR China.

Purpose: Metabolic reprogramming, particularly the Warburg effect, plays a crucial role in the onset and progression of tumors. The ubiquitin-conjugating enzyme E2 Q2 (UBE2Q2) has been identified overexpressed in hepatocellular carcinoma (HCC). Our aim was to determine if UBE2Q2 plays a role in regulating glycolysis, contributing to the carcinogenesis of HCC.

View Article and Find Full Text PDF

Increased level of angiotensin II (Ang II) plays a central role in the development of hypertensive vascular remodeling. In this study, we identified the deubiquitinating enzyme Josephin domain-containing protein 2 (JOSD2) as a protective factor and investigated its molecular mechanism in Ang II-induced vascular remodeling. First, we found that JOSD2 was upregulated in aortic smooth muscle cells, but not in endothelial cells of Ang II-challenged mouse vascular tissues.

View Article and Find Full Text PDF

mRNA display is an effective tool to identify high-affinity macrocyclic binders for challenging protein targets. The success of an mRNA display selection is dependent on generating highly diverse libraries with trillions of peptides. While translation elongation can canonically accommodate the 61 proteinogenic triplet codons, translation initiation is restricted to the native start codon AUG.

View Article and Find Full Text PDF

Background: Enolase 1 (ENO1) is a conserved glycolytic enzyme that regulates glycolysis metabolism. However, its role beyond glycolysis in the pathophysiology of multiple myeloma (MM) remains largely elusive. Herein, this study aimed to elucidate the function of ENO1 in MM, particularly its impact on mitophagy under bortezomib-induced apoptosis.

View Article and Find Full Text PDF

Recent studies have implicated altered ubiquitination/de-ubiquitination pathway in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we investigated the potential role of a deubiquitinase, ubiquitin-specific peptidase 25 (USP25), in MASLD. Analysis of mRNA profiling data showed that both human and mouse MASLD are associated with reduced expression of USP25 in hepatocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!