Background: Retinal optical coherence tomography findings in Lewy body diseases and their implications for visual outcomes remain controversial. We investigated whether region-specific thickness analysis of retinal layers could improve the detection of macular atrophy and unravel its association with visual disability in Parkinson's disease.
Methods: Patients with idiopathic Parkinson's disease (n = 63), dementia with Lewy bodies (n = 8), and E46K mutation carriers in the α-synuclein gene (E46K-SNCA) (n = 4) and 34 controls underwent Spectralis optical coherence tomography macular scans and a comprehensive battery of visual function and cognition tests. We computed mean retinal layer thicknesses of both eyes within 1-, 2-, 3-, and 6-mm diameter macular discs and in concentric parafoveal (1- to 2-mm, 2- to 3-mm, 1- to 3-mm) and perifoveal (3- to 6-mm) rings. Group differences in imaging parameters and their relationship with visual outcomes were analyzed. A multivariate logistic model was developed to predict visual impairment from optical coherence tomography measurements in Parkinson's disease, and cutoff values were determined with receiver operating characteristic analysis.
Results: When compared with controls, patients with dementia with Lewy bodies had significant thinning of the ganglion cell-inner plexiform layer complex within the central 3-mm disc mainly because of differences in 1- to 3-mm parafoveal thickness. This parameter was strongly correlated in patients, but not in controls, with low contrast visual acuity and visual cognition outcomes (P < .05, False Discovery Rate), achieving 88% of accuracy in predicting visual impairment in Parkinson's disease.
Conclusion: Our findings support that parafoveal thinning of ganglion cell-inner plexiform complex is a sensitive and clinically relevant imaging biomarker for Lewy body diseases, specifically for Parkinson's disease. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790692 | PMC |
http://dx.doi.org/10.1002/mds.27728 | DOI Listing |
J Imaging Inform Med
January 2025
Department of Ophthalmology, The Affiliated Hospital of Guilin Medical University, Guilin, China.
Optical coherence tomography angiography (OCTA) is an emerging, non-invasive technique increasingly utilized for retinal vasculature imaging. Analysis of OCTA images can effectively diagnose retinal diseases, unfortunately, complex vascular structures within OCTA images possess significant challenges for automated segmentation. A novel, fully convolutional dense connected residual network is proposed to effectively segment the vascular regions within OCTA images.
View Article and Find Full Text PDFAtherosclerosis
January 2025
State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Department of Cardiology of the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China. Electronic address:
Background And Aims: Histologic studies indicated that healed plaque, characterized by a multilayered pattern, is indicative of prior atherothrombosis and subsequent healing. However, longitudinal in vivo data on healed plaque formation in non-culprit plaques are limited. This study aimed to investigate serial changes and clinical significance of new layered pattern formation in non-culprit plaques in patients with acute coronary syndromes (ACS) using serial optical coherence tomography (OCT) imaging.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
Christian Doppler Laboratory for Artificial Intelligence in Retina, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria; Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria.
Background And Objectives: Automated, anatomically coherent retinal layer segmentation in optical coherence tomography (OCT) is one of the most important components of retinal disease management. However, current methods rely on large amounts of labeled data, which can be difficult and expensive to obtain. In addition, these systems tend often propose anatomically impossible results, which undermines their clinical reliability.
View Article and Find Full Text PDFJ Ophthalmic Inflamm Infect
January 2025
School of Medicine, National Taiwan University, Taipei, Taiwan.
Purpose: To identify the macular retinal layer thickness changes in polyarteritis nodosa (PAN) patients without pathological findings appearing in color fundus photography (CFP), and to investigate the correlations with disease durations.
Methods: A total of 24 PAN patients who had been for 3 years or more and underwent SD-OCT were recruited from the UK Biobank, with exclusions for diabetes, eye disease, or abnormal CFP findings. Only the right eyes were included, with each PAN patient paired one-to-one with a control matched for age, sex, and ethnicity.
Transl Vis Sci Technol
January 2025
Department of Biomedical Engineering, Duke University, Durham, NC, USA.
The introduction of optical coherence tomography (OCT) in the 1990s revolutionized diagnostic ophthalmic imaging. Initially, OCT's role was primarily in the adult ambulatory ophthalmic clinics. Subsequent advances in handheld form factors, integration into surgical microscopes, and robotic assistance have expanded OCT's utility and impact outside of its initial environment in the adult outpatient ophthalmic clinic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!