Recently the high incidence of worldwide Candida infections has substantially increased. The growing problem about toxicity of antifungal drugs and multidrug resistance aggravates the need for the development of new effective strategies. Natural compounds in this context represent promising alternatives having potential to be exploited for improving human health. The present study was therefore designed to evaluate the antifungal effect of a naturally occurring phenolic, octyl gallate (OG), on Candida albicans and to investigate the underlying mechanisms involved. We demonstrated that OG at 25 μg/ml could effectively inhibit C. albicans. Mechanistic insights revealed that OG affects mitochondrial functioning as Candida cells exposed to OG did not grow on non-fermentable carbon sources. Dysfunctional mitochondria triggered generation of reactive oxygen species (ROS), which led to membrane damage mediated by lipid peroxidation. We explored that OG inhibited glucose-induced reduction in external pH and causes decrement in ergosterol levels by 45%. Furthermore, OG impedes the metabolic flexibility of C. albicans by inhibiting the glyoxylate enzyme isocitrate lyase, which was also confirmed by docking analysis. Additionally, OG affected virulence traits such as morphological transition and cell adherence. Furthermore, we depicted that OG not only prevented biofilm formation but eliminates the preformed biofilms. In vivo studies with Caenorhabditis elegans nematode model confirmed that OG could enhance the survival of C. elegans after infection with Candida. Toxicity assay using red blood cells showed only 27.5% haemolytic activity. Taken together, OG is a potent inhibitor of C. albicans that warrants further structural optimization and pharmacological investigations.

Download full-text PDF

Source
http://dx.doi.org/10.1093/mmy/myz054DOI Listing

Publication Analysis

Top Keywords

octyl gallate
8
dysfunctional mitochondria
8
membrane damage
8
candida albicans
8
candida
5
albicans
5
gallate triggers
4
triggers dysfunctional
4
mitochondria leading
4
leading ros
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!