Objective: We evaluate the O6-methylguanylmethyltransferase (MGMT) methylation status noninvasively by analyzing radiomics features of C-methionine (MET) PET images, which may reflect the detailed biological properties of gliomas.

Patients And Methods: Fifty-seven patients with histopathologically confirmed gliomas, who were initially examined with C-MET PET/MR were retrospectively enrolled. Quantitative uptake of MET was assessed using conventional, histogram and texture features. These features were compared between the two groups classified by MGMT promoter methylation status.

Results: The histogram features (Skewness and Kurtosis) of the MGMT methylated group were significantly higher than those of the MGMT unmethylated group (Skewness: 0.90 ± 0.71 vs. 0.49 ± 0.45; P = 0.01) (Kurtosis: 1.36 ± 2.30 vs. 0.08 ± 0.65; P = 0.003), but there were no significant differences in Skewness or Kurtosis between the groups in glioma-grade-matched subgroup analysis. Moreover, there was no significant difference in other features between the methylated group and unmethylated group.

Conclusion: The histogram features (Skewness and Kurtosis) of MET PET/MRI may be two key indicators to detect MGMT methylation status in gliomas and valuable predictors for the clinical responses of patients scheduled to receive temozolomide chemotherapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MNM.0000000000001039DOI Listing

Publication Analysis

Top Keywords

methylation status
12
skewness kurtosis
12
status gliomas
8
mgmt methylation
8
histogram features
8
features skewness
8
methylated group
8
features
6
mgmt
5
histogram
4

Similar Publications

Methylation status of selected genes in non-small cell lung carcinoma - current knowledge and future perspectives.

Neoplasma

December 2024

Department of Clinical and Molecular Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.

DNA methylation is recognized as an early event in cancer initiation and progression. This review aimed to compare the methylation status of promoter regions in selected genes across different histological subtypes of non-small cell lung cancer (NSCLC), including adenocarcinoma, squamous cell carcinoma, large cell carcinoma, and the rare but highly aggressive large-cell neuroendocrine carcinoma (LCNEC). A comprehensive literature search was conducted in the PubMed database until August 17, 2024, using standardized keywords to identify reports on promoter methylation in NSCLC.

View Article and Find Full Text PDF

MTHFD2 promotes breast cancer cell proliferation through IFRD1 RNA m6A methylation-mediated HDAC3/p53/mTOR pathway.

Neoplasma

December 2024

Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.

MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.

View Article and Find Full Text PDF

Background: One-carbon metabolism (OCM), a biochemical pathway dependent on micronutrients including folate and vitamin B12, plays an essential role in aging-related physiological processes. DNA methylation-based aging biomarkers may be influenced by OCM.

Objective: This study investigated associations of OCM-related biomarkers with epigenetic aging biomarkers in the National Health and Nutrition Examination Survey (NHANES).

View Article and Find Full Text PDF

Neuropathology has been in existence as a speciality in India since the 1950s. Its practice has kept pace with the developments in the field, paralleling advancements in neurosurgery and neurosciences, especially in tertiary care centres. This nationwide survey, conducted across 52 centres, provides a comprehensive analysis of diagnostic infrastructure, training opportunities, and challenges in the practice of neuropathology.

View Article and Find Full Text PDF

Redox imbalance driven epigenetic reprogramming and cardiovascular dysfunctions: phytocompounds for prospective epidrugs.

Phytomedicine

January 2025

Post-graduate Department of Biotechnology, Utkal University, Bhubaneswar, 751004, Odisha, India.; Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India.. Electronic address:

Background: Cardiovascular diseases (CVDs) are the major contributor to global mortality and are gaining incremental attention following the COVID-19 outbreak. Epigenetic events such as DNA methylation, histone modifications, and non-coding RNAs have a significant impact on the incidence and onset of CVDs. Altered redox status is one of the major causative factors that regulate epigenetic pathways linked to CVDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!