Guided wave methodologies are among the established approaches for structural health monitoring (SHM). For guided wave data, being able to accurately estimate wave properties in the absence of ample measurements can greatly facilitate the often time-consuming and potentially expensive data acquisition procedure. Nevertheless, inherent complexities of the guided waves, including their multimodal and frequency dispersive nature, hinder processing, analysis, and behavior prediction. The severity of these complexities is even higher in anisotropic media, such as composites. Several methods, including sparse wavenumber analysis (SWA), have been proposed in the literature to characterize guided wave propagation by extracting wave characteristics in a particular medium from the information contained in a few measurements, and subsequently using this information for full wavefield prediction. In this paper, we investigate the efficacy of guided wave reconstruction techniques, based on SWA, for predicting the behavior of guided waves in composite materials. We implement these techniques on several experimental and simulation data sets. We study their performance in estimating the frequency-dependent (dispersive) and anisotropic velocities of guided waves and in reconstructing full wavefields from limited available information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2019.2918746 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!