A pericyte-glia scarring develops at the leaky capillaries in the hippocampus during seizure activity.

Epilepsia

Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France.

Published: July 2019

Objective: Inflammatory cerebrovascular damage occurs in epilepsy. Here, we tested the hypothesis that a pericyte-glia scar forms around the outer wall of hippocampal capillaries in a model of temporal lobe epilepsy associated with hippocampal sclerosis. We studied the participation of stromal cells expressing platelet-derived growth factor receptor beta (PDGFRβ) and extracellular matrix modifications to the perivascular scar during epileptogenesis.

Methods: We used NG2DsRed/C57BL6 mice and induced status epilepticus (SE) followed by epileptogenesis and spontaneous recurrent seizures (SRS) by means of unilateral intrahippocampal injection of kainic acid (KA). For pharmacological assessment, we used organotypic hippocampal cultures (OHCs) where ictal electrographic activity was elicited by KA or bicuculline.

Results: NG2DsRed pericytes, GFAP astroglia, and IBA1 microglia are reactive and converge to form a pericapillary multicellular scar in the CA hippocampal regions during epileptogenesis and at SRS. The capillaries are leaky as indicated by fluorescein entering the parenchyma from the peripheral blood. Concomitantly, PDGFRβ transcript and protein levels were significantly increased. Within the regional scar, a fibrotic-like PDGFRβ mesh developed around the capillaries, peaking at 1 week post-SE and regressing, but not resolving, at SRS. Abnormal distribution or accumulation of extracellular matrix collagens III/IV occurred in the CA regions during seizure progression. PDGFRβ/DAPI cells were in direct contact with or adjacent to the damaged NG2DsRed pericytes at the capillary interface, consistent with the notion of stromal cell reactivity or fibroblast formation. Inducing electrographic activity in OHCs was sufficient to augment PDGFRβ reactivity around the capillaries. The latter effect was pharmacologically mimicked by treating OHCs with the PDGFRβ agonist PDGF-BB and it was diminished by the PDGFRβ inhibitor imatinib.

Significance: The reported multicellular activation and scar are traits of perivascular inflammation and hippocampal sclerosis in experimental epilepsy, with an implication for neurovascular dysfunction. Modulation of PDGFRβ could be exploited to target inflammation in this chronic disease setting.

Download full-text PDF

Source
http://dx.doi.org/10.1111/epi.16019DOI Listing

Publication Analysis

Top Keywords

hippocampal sclerosis
8
electrographic activity
8
ng2dsred pericytes
8
pdgfrβ
7
capillaries
5
hippocampal
5
pericyte-glia scarring
4
scarring develops
4
develops leaky
4
leaky capillaries
4

Similar Publications

Circulating microRNAs as Biomarkers of Various Forms of Epilepsy.

Med Sci (Basel)

January 2025

Department of Medical Genetics, Clinical Neurophysiology of Postgraduate Education, V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University, Russian National Research, Krasnoyarsk 660022, Russia.

: Epilepsy is a group of disorders characterized by a cluster of clinical and EEG signs leading to the formation of abnormal synchronous excitation of neurons in the brain. It is one of the most common neurological disorders worldwide; and is characterized by aberrant expression patterns; both at the level of matrix transcripts and at the level of regulatory RNA sequences. Aberrant expression of a number of microRNAs can mark a particular epileptic syndrome; which will improve the quality of differential diagnosis.

View Article and Find Full Text PDF

Epilepsy is a common neurological disease that is treated with medications; however, patients with drug-resistant epilepsy, commonly intractable temporal lobe epilepsy, tend to have better control with surgical treatment. While the mainstay of surgical treatment is anterior temporal lobectomy, it carries risk of potential adverse effects hence minimally invasive techniques are now being used as an alternative to open surgery. This systematic review and meta-analysis compare the efficacy and safety of three of the most used techniques: laser interstitial thermal therapy (LITT), radiofrequency ablation (RFA) and stereotactic radiosurgery (SRS).

View Article and Find Full Text PDF

Neuropathology of focal epilepsy: the promise of artificial intelligence and digital Neuropathology 3.0.

Pathology

December 2024

Partner of the European Reference Network (ERN) EpiCARE, Germany.

Focal lesions of the human neocortex often cause drug-resistant epilepsy, yet ​surgical resection of the epileptogenic region has been proven as a successful strategy to control seizures in a carefully selected patient cohort. Continuous efforts to study neurosurgically resected brain samples at the microscopic level, i.e.

View Article and Find Full Text PDF

Neurodegeneration: 2024 update.

Free Neuropathol

January 2024

Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

This review highlights a collection of both diverse and highly impactful studies published in the previous year selected by the author from the neurodegenerative neuropathology literature. As with previous reviews in this series, the focus is, to the best of my ability, to highlight human tissue-based experimentation most relevant to experimental and clinical neuropathologists. A concerted effort was made to balance the selected studies across neurodegenerative disease categories, approaches, and methodologies to capture the breadth of the research landscape.

View Article and Find Full Text PDF

Dose-Dependent Effect of a New Biotin Compound in Hippocampal Remyelination in Rats.

Mol Neurobiol

January 2025

Department of Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey.

Demyelination is commonly observed in neurodegenerative disorders, including multiple sclerosis (MS). Biotin supplementation is known to stabilize MS progression. To reduce the effective dose of biotin, we synthesized a new and superior form of biotin, a complex of magnesium ionically bound to biotin (MgB) and compared its dose-dependent effect with biotin alone after inducing demyelination using lysolecithin (LPC) in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!