Within the past few years, intriguing graphene Dirac cones have attracted intense interest in novel two-dimensional (2D) Dirac materials as ultrahigh-mobility functional materials. In this work, the phonon-limited charge transport properties of α-graphyne (α-GY), α-graphdiyne (α-GDY), and β-graphyne (β-GY) were investigated using the Boltzmann transport equation within the first-principles framework while considering the electron-phonon coupling (EPC). Despite all three investigated compounds being 2D Dirac carbon materials, each demonstrated distinctly different carrier mobilities by one order of magnitude (2.2 × 104 cm2 V-1 s-1 for α-GY, 2.1 × 103 cm2 V-1 s-1 for α-GDY and 1.9 × 103 cm2 V-1 s-1 for β-GY at room-temperature and a carrier connection of n ∼ 3 × 1012 cm-2). The essential differences in the mobilities of these materials originated from the acetylenic linkage limiting the group velocity and the E2g phonon modes limiting the scattering time. For example, a few uniformly equivalent acetylenic linkages and E2g phonon modes tend to generate high mobilities. A simple mobility relationship was determined using the number of E2g photon modes, allowing for a quick estimation of the mobilities for Dirac materials. α-GY was identified as a promising alternative to graphene for next generation nanoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9nr01734h | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China.
Two-dimensional (2D) carbon allotropes, together with their binary and ternary counterparts, have attracted substantial research interest due to their peculiar geometries and properties. Among them, grapheneplus, a derivative of penta-graphene, has been proposed to exhibit unusual mechanical and electronic behaviour. In this work, we perform a comprehensive first-principles study on its isoelectronic and isostructural analogue, a grapheneplus-like BCN (gp-BCN) monolayer.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Applied Physics and Computational Mathematics, Beijing 100088, People's Republic of China.
Strain engineering is an effective method to modulate the electronic properties of two-dimensional materials. In this study, we theoretically studied the carrier mobility of the PdAs monolayer under different biaxial tensile strains based on the state-of-the-art electron-phonon coupling theory. We observe that the carrier mobility is largely enhanced for both n-type and p-type PdAs monolayers.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute for Computational Materials Science, Joint Center for Theoretical Physics, and Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
Two-dimensional (2D) materials have attracted enormous research attention due to their remarkable properties and potential applications in electronic and optoelectronic devices. In this work, Janus 2D copper-containing chalcogenides, CuPSeS and CuPTeSe monolayers, are proposed and studied systematically based on first-principles calculations. These two Janus-structured materials possess the same thermal and dynamic stability as the perfect CuPSe structure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang Demonstration Zone, Xiangyang 441000, China.
Materials with high crystallographic symmetry are supposed to be good thermoelectrics because they have high valley degeneracy () and superb carrier mobility (μ). Binary GeSe crystallizes in a low-symmetry orthorhombic structure accompanying the stereoactive 4s lone pairs of Ge. Herein, we rationally modify GeSe into a high-symmetry rhombohedral structure by alloying with GeTe based on the valence-shell electron-pair repulsion theory.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Building 310, 2800 Kgs. Lyngby, Denmark.
The symmetry breaking that is formed when oxide layers are combined epitaxially to form heterostructures has led to the emergence of new functionalities beyond those observed in the individual parent materials. SrTiO-based heterostructures have played a central role in expanding the range of functional properties arising at the heterointerface and elucidating their mechanistic origin. The heterostructure formed by the epitaxial combination of spinel γ-AlO and perovskite SrTiO constitutes a striking example with features distinct from perovskite/perovskite counterparts such as the archetypical LaAlO/SrTiO heterostructure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!