The difference in the defect structures produced by different ion masses in a tungsten lattice is investigated using 80 MeV Au7+ ions and 10 MeV B3+ ions. The details of the defects produced by ions in recrystallized tungsten foil samples are studied using transmission electron microscopy. Dislocations of type b = 1/2[111] and [001] were observed in the analysis. While highly energetic gold ion produced small clusters of defects with very few dislocation lines, boron has produced large and sparse clusters with numerous dislocation lines. The difference in the defect structures could be due to the difference in separation between primary knock-on atoms produced by gold and boron ions.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1431927619000667DOI Listing

Publication Analysis

Top Keywords

mass ion
8
difference defect
8
defect structures
8
dislocation lines
8
produced
5
heavy mass
4
ion
4
ion gold
4
gold light
4
light mass
4

Similar Publications

We develop a technology based on competitive adsorption between drug molecules and water, specifically designed to address the critical issue of poor drug solubility. By specially engineering silica nanosurfaces with ultrahigh densities of silanol, we significantly enhance their affinity for both drug molecules and water, with a notably greater increase in water affinity. Such surfaces can effectively adsorb a variety of drug molecules under dry conditions.

View Article and Find Full Text PDF

Miniaturization of next-generation active neural implants requires novel micro-packaging solutions that can maintain their long-term coating performance in the body. This work presents two thin-film coatings and evaluates their biostability and in vivo performance over a 7-month animal study. To evaluate the coatings on representative surfaces, two silicon microchips with different surface microtopography are used.

View Article and Find Full Text PDF

Miniaturized mass spectrometers offer significant potential for in situ analysis due to their high specificity and portability. In traditional data-dependent acquisition (DDA) mode, precursor ions for tandem analysis are selected based on the full-scan mass spectrum. However, in situ applications often require the direct analysis of complex samples without extensive sample pretreatment, making them susceptible to chemical noise that can result in false negatives.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a devastating malignant brain tumor with a poor prognosis. GBM is associated with radioresistance. Post-translational modifications (PTMs) such as protein phosphorylation can play an important role in the cellular response to radiation.

View Article and Find Full Text PDF

In silico optimization of a challenging bispecific antibody chromatography step.

Biotechnol Prog

January 2025

Automation, Digital and Learning Solutions, Cytiva, Karlsruhe, Germany.

Mechanistic modeling of chromatographic steps is an effective tool in biopharma process development that enhances process understanding and accelerates optimization efforts and subsequent risk assessment. A relatively new model for ion exchange chromatography is the colloidal particle adsorption (CPA) formalism, which promises improved separation of material and molecule-specific parameters. This case study demonstrates a straightforward CPA modeling workflow to describe an ion exchange chromatography polishing step of a knobs-into-holes construct bispecific antibody molecule.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!