is a perennial big shrub that has the potential to accumulate high concentrations of heavy metals. Metal sequestration in old organs has been considered as a mechanism for plant survival in polluted soils. The aim of the present study was to assess the role of the old leaves as a sink for HMs accumulation in . Two instruments were used: atomic absorption spectroscopy (AAS) and X-ray fluorescence (XRF) microscopy. Soil and plant samples were collected from around one of the worst congested traffic areas in the United Arab Emirates (UAE). Samples from roots, stem, and green and old leaves were prepared and analyzed by both instruments. was able to concentrate Fe, Mn, Sr, and Zn in the roots, but their translocation to stem and green leaves was low. Old leaves had greater ability to accumulate significantly higher concentrations of different metals, especially Fe and Sr, than other parts of the plants, indicating that uses these metabolically less-active leaves as sinks for heavy metals. Fe and Sr attained higher bioconcentration and accumulation values, compared to Zn and Mn. There were significant positive correlations between XRF and AAS for all elements in the different organs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15226514.2019.1619164 | DOI Listing |
J Food Sci
January 2025
School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing, China.
Whole-grain foods (WGFs) constitute a large part of humans' daily diet, making risk identification of WGFs important for health and safety. However, existing research on WGFs has paid more attention to revealing the effects of a single hazardous substance or various hazardous substances on food safety, neglecting the mutual influence between individual hazardous substances and between hazardous substances and basic information. Therefore, this paper proposes a causal inference of WGFs' risk based on a generative adversarial network (GAN) and Bayesian network (BN) to explore the mutual influence between hazardous substances and basic information.
View Article and Find Full Text PDFLangmuir
January 2025
School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China.
The anionic species of antimony(V) and phosphate(V) are commonly found in the contaminated soil of mining areas, exerting a significant influence on the sorption of heavy metals and thus affecting their migration. This study quantitatively discussed the sorption mechanism of Sb and P in promoting the sorption of Cd or Cu on goethite through a series of extraction methods. In the single sorption system, the majority of Cu (87-98%) is adsorbed on goethite in the form of EDTA-extractable Cu (EF Cu, possibly inner-sphere complexes) under pH conditions of 3.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Civil Engineering, National Institute of Technology Andhra Pradesh, Tadepalligudem, India.
Plastics are widely used across various applications from packing to commercial products. Once discarded, they were subjected to environmental stresses, causing them to degrade into microplastics (MPs). These small, invisible pollutants pose a significant threat to aquatic ecosystems, gradually compromising the resilience and vitality of the natural environment.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China.
Jarosite residues are typical hazardous waste byproducts generated during the iron removal process in hydrometallurgical solutions. The jarosite process is widely used for iron removal in zinc hydrometallurgy; jarosite disposal has become a significant barrier to sustainable development in the industry. During this process, jarosite residues entrain and co-precipitate with heavy metals, which are hazardous but valuable.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Hebei Lansheng Bio-Tech Co, Ltd, Shijiazhuang, 052263, P. R. China.
A novel fluorescence sensing nanoplatform (CDs/AuNCs@ZIF-8) encapsulating carbon dots (CDs) and gold nanoclusters (AuNCs) within a zeolitic imidazolate framework-8 (ZIF-8) was developed for ratiometric detection of formaldehyde (FA) in the medium of hydroxylamine hydrochloride (NHOH·HCl). The nanoplatform exhibited pink fluorescence due to the aggregation-induced emission (AIE) effect of AuNCs and the internal filtration effect (IFE) between AuNCs and CDs. Upon reaction between NHOH·HCl and FA, a Schiff base formed via aldehyde-diamine condensation, releasing hydrochloric acid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!