The scaffolds of polyketides are constructed via assembly of extender units based on malonyl-CoA and its derivatives that are substituted at the C2-position with diverse chemical functionality. Subsequently, a transcription-factor-based biosensor for malonyl-CoA has proven to be a powerful tool for detecting malonyl-CoA, facilitating the dynamic regulation of malonyl-CoA biosynthesis and guiding high-throughput engineering of malonyl-CoA-dependent processes. Yet, a biosensor for the detection of malonyl-CoA derivatives has yet to be reported, severely restricting the application of high-throughput synthetic biology approaches to engineering extender unit biosynthesis and limiting the ability to dynamically regulate the biosynthesis of polyketide products that are dependent on such α-carboxyacyl-CoAs. Herein, the FapR biosensor was re-engineered and optimized for a range of mCoA concentrations across a panel of E. coli strains. The effector specificity of FapR was probed by cell-free transcription-translation, revealing that a variety of non-native and non-natural acyl-thioesters are FapR effectors. This FapR promiscuity proved sufficient for the detection of the polyketide extender unit methylmalonyl-CoA in E. coli, providing the first reported genetically encoded biosensor for this important metabolite. As such, the previously unknown broad effector promiscuity of FapR provides a platform to develop new tools and approaches that can be leveraged to overcome limitations of pathways that construct diverse α-carboxyacyl-CoAs and those that are dependent on them, including biofuels, antibiotics, anticancer drugs, and other value-added products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915837 | PMC |
http://dx.doi.org/10.1021/acssynbio.9b00078 | DOI Listing |
Microbiome
January 2025
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
Background: Sponges harbor microbial communities that play crucial roles in host health and ecology. However, the genetic adaptations that enable these symbiotic microorganisms to thrive within the sponge environment are still being elucidated. To understand these genetic adaptations, we conducted a comparative genomics analysis on 350 genomes of Actinobacteriota, a phylum commonly associated with sponges.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Division of Pediatric Epileptology, Department of Pediatrics I, Medical Faculty of Heidelberg, Heidelberg University, Heidelberg, Germany.
Background: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder affecting multiple organ systems, with a prevalence of 1:6,760-1:13,520 live births in Germany. On the molecular level, TSC is caused by heterozygous loss-of-function variants in either of the genes TSC1 or TSC2, encoding the Tuberin-Hamartin complex, which acts as a critical upstream suppressor of the mammalian target of rapamycin (mTOR), a key signaling pathway controlling cellular growth and metabolism. Despite the therapeutic success of mTOR inhibition in treating TSC-associated manifestations, studies with mTOR inhibitors in children with TSC above two years of age have failed to demonstrate beneficial effects on disease-related neuropsychological deficits.
View Article and Find Full Text PDFNat Neurosci
January 2025
Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA.
Huntington's disease (HD) is caused by a CAG repeat expansion in the HTT gene, leading to altered gene expression. However, the mechanisms leading to disrupted RNA processing in HD remain unclear. Here we identify TDP-43 and the N6-methyladenosine (m6A) writer protein METTL3 to be upstream regulators of exon skipping in multiple HD systems.
View Article and Find Full Text PDFArch Virol
January 2025
Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, Jiangsu, China.
In this study, a lytic phage, named PG216, was obtained from seawater collected in Qingdao, using Vibrio parahaemolyticus strain G299 as its host. Transmission electron microscopy revealed that phage PG216 has an icosahedral head with a diameter of 100 ± 6.7 nm and a contractible tail with a length of 126 ± 6.
View Article and Find Full Text PDFMol Genet Genomics
January 2025
Department of Molecular Phytopathology and Biotechnology, Institute of Phytopathology, Christian-Albrechts-University of Kiel, 24118, Kiel, Germany.
Brassica villosa is characterized by its dense hairiness and high resistance against the fungal pathogen Sclerotinia sclerotiorum. Information on the genetic and molecular mechanisms governing trichome development in B. villosa is rare.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!