, an extensively used lactic starter, is generally produced in yeast extract-based media containing a complex mixture of peptides whose exact composition remains elusive. In this work, we aimed at investigating the peptide content of a commercial yeast extract (YE) and identifying dynamics of peptide utilization during the growth of the industrial N4L strain, cultivated in 1 l bioreactors under pH-regulation. To reach that goal, we set up a complete analytical workflow based on mass spectrometry (peptidomics). About 4,600 different oligopeptides ranging from 6 to more than 30 amino acids in length were identified during the time-course of the experiment. Due to the low spectral abundance of individual peptides, we performed a clustering approach to decipher the rules of peptide utilization during fermentation. The physicochemical characteristics of consumed peptides perfectly matched the known affinities of the oligopeptide transport system of . Moreover, by analyzing such a large number of peptides, we were able to establish that peptide net charge is the major factor for oligopeptide transport in N4L.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6524704PMC
http://dx.doi.org/10.3389/fmicb.2019.00906DOI Listing

Publication Analysis

Top Keywords

yeast extract
8
peptide utilization
8
oligopeptide transport
8
peptides
5
insights complexity
4
complexity yeast
4
extract peptides
4
peptides utilization
4
utilization extensively
4
extensively lactic
4

Similar Publications

An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.

View Article and Find Full Text PDF

New plant-based kefir fermented beverages as potential source of GABA.

J Food Sci Technol

February 2025

Food Science and Nutrition Department, School of Food Engineering, University of Campinas (UNICAMP), 80, Monteiro Lobato, Campinas, SP 13083-862 Brazil.

The aim of this study was to assess the gamma-aminobutyric acid (GABA) production in plant-based fermented beverages with kefir cultures (milk and water kefir). Water-soluble extracts of peanut and Brazil nut were evaluated as non-dairy substrates for the development of new bioactive beverages. A total of 12 formulations were developed and evaluated for their chemical composition, physical chemical characterization, and microbiological counts (aerobic mesophilic bacteria, lactobacilli, lactococci and yeasts).

View Article and Find Full Text PDF

Fungal lignocellulolytic enzymes: an in silico and full factorial design approach.

World J Microbiol Biotechnol

January 2025

Graduate Program in Bioscience Technologies, Universidade Tecnológica Federal do Paraná, Toledo, Paraná, Brazil.

Efficient degradation of lignocellulosic biomass is key for the production of value-added products, contributing to sustainable and renewable solutions. This study employs a two-step approach to evaluate lignocellulolytic enzymes of Ceratocystis paradoxa, Colletotrichum falcatum, and Sporisorium scitamineum. First, an in silico genomic analysis was conducted to predict the potential enzyme groups produced by these fungi.

View Article and Find Full Text PDF

According to the Humane Society, 25 to 40 percent of pet dogs in the United States are adopted from animal shelters. Shelter dogs can harbor bacterial, viral, fungal, and protozoal pathogens, posing risks to canine and human health. These bacterial pathogens may also carry antibiotic resistance genes (ARGs), serving as a reservoir for antimicrobial resistance (AMR) transmission.

View Article and Find Full Text PDF

Enhanced MICP for Soil Improvement and Heavy Metal Remediation: Insights from Landfill Leachate-Derived Ureolytic Bacterial Consortium.

Microorganisms

January 2025

Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environmental Change (ILCEC)/Collaborative Innovation Centre on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China.

This study investigates the potential of microbial-induced calcium carbonate precipitation (MICP) for soil stabilization and heavy metal immobilization, utilizing landfill leachate-derived ureolytic consortium. Experimental conditions identified yeast extract-based media as most effective for bacterial growth, urease activity, and calcite formation compared to nutrient broth and brown sugar media. Optimal MICP conditions, at pH 8-9 and 30 °C, supported the most efficient biomineralization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!