In mass-spectrometry-based proteomics, the identification and quantification of peptides and proteins heavily rely on sequence database searching or spectral library matching. The lack of accurate predictive models for fragment ion intensities impairs the realization of the full potential of these approaches. Here, we extended the ProteomeTools synthetic peptide library to 550,000 tryptic peptides and 21 million high-quality tandem mass spectra. We trained a deep neural network, termed Prosit, resulting in chromatographic retention time and fragment ion intensity predictions that exceed the quality of the experimental data. Integrating Prosit into database search pipelines led to more identifications at >10× lower false discovery rates. We show the general applicability of Prosit by predicting spectra for proteases other than trypsin, generating spectral libraries for data-independent acquisition and improving the analysis of metaproteomes. Prosit is integrated into ProteomicsDB, allowing search result re-scoring and custom spectral library generation for any organism on the basis of peptide sequence alone.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41592-019-0426-7DOI Listing

Publication Analysis

Top Keywords

tandem mass
8
mass spectra
8
spectral library
8
fragment ion
8
prosit
5
prosit proteome-wide
4
proteome-wide prediction
4
prediction peptide
4
peptide tandem
4
spectra deep
4

Similar Publications

Rationale: The dietary components choline, betaine, and L-carnitine are converted by intestinal microbiota into the molecule trimethylamine (TMA). In the human liver, hepatic flavin-containing monooxygenase 3 oxidizes TMA to trimethylamine-N-oxide (TMAO). TMAO is considered a candidate marker for the risk of cardiovascular disease.

View Article and Find Full Text PDF

Background/objectives: Janus kinase inhibitors open new horizons for small-molecule drugs in treating inflammatory bowel disease, with ritlecitinib demonstrating significant efficacy in clinical trials for ulcerative colitis and Crohn's disease. Ritlecitinib, a second-generation JAK3 inhibitor, is a novel therapeutic agent for alopecia areata and other autoimmune conditions.

Methods: A new stability-indicating UHPLC-DAD-MS/MS method was developed, validated, and applied for a forced degradation study of ritlecitinib under ICH guidelines.

View Article and Find Full Text PDF

Background/objectives: This study investigates the metabolic profile of a single dose of etodolac in healthy volunteers, focusing on pharmacokinetics, clinical parameters, and metabolomic variations to identify biomarkers and pathways linked to drug response, efficacy, and safety.

Methods: Thirty-seven healthy volunteers, enrolled after rigorous health assessments, received a single dose of etodolac (Flancox 500 mg). Pharmacokinetic profiles were determined using tandem mass spectrometry analysis, and the metabolomic profiling was conducted using baseline samples (pre-dose) and samples at maximum drug concentration (post-dose) via liquid chromatography coupled with a quadrupole time-of-flight mass spectrometer.

View Article and Find Full Text PDF

Multi-Omics and Network-Based Drug Repurposing for Septic Cardiomyopathy.

Pharmaceuticals (Basel)

January 2025

Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China.

Background/objectives: Septic cardiomyopathy (SCM) is a severe cardiac complication of sepsis, characterized by cardiac dysfunction with limited effective treatments. This study aimed to identify repurposable drugs for SCM by integrated multi-omics and network analyses.

Methods: We generated a mouse model of SCM induced by lipopolysaccharide (LPS) and then obtained comprehensive metabolic and genetic data from SCM mouse hearts using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and RNA sequencing (RNA-seq).

View Article and Find Full Text PDF

Phytochemical and Biological Investigations of Crude Extracts of .

Pharmaceuticals (Basel)

December 2024

Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, TR-03100 Afyonkarahisar, Turkey.

: L. is a genus of the Fabaceae family, encompassing over 3000 species globally, with 380 species found in Turkey. This is the inaugural examination of the phytochemical, antioxidant, antibacterial, and cytotoxic properties of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!