Sorption and desorption determine the amount of an herbicide in soil solution. Therefore, knowledge of the sorption and desorption coefficients in different soils is an essential factor to estimate the potential for environmental contamination by herbicides. We evaluated the feasibility of multivariate and linear discriminant analyses to predict the sorption and desorption capacity of a soil for diuron, one of the most used herbicides on sugarcane plantations. The adsorptive capacity in twenty-seven Brazilian soil samples was estimated using the sorption constant (Kfs) and desorption constant (Kfd) obtained by the Freundlich isotherms. The regression model was created from the sorbed and nonsorbed concentrations of diuron in soils. Ultra-performance liquid chromatography was applied to quantify the diuron concentrations. The multivariate analysis separated the soils into four groups considering the similarity of the following attributes: pH, organic matter, clay, and base saturation. The groups showed a similar pattern of sorption and desorption for diuron: Lom-Lclay: low sorption (5.9 ± 1.2) and high desorption (10.9 ± 0.6); Lclay: low sorption (7.5 ± 1.1) and high desorption (11.4 ± 1.3); Hom-Hclay: high sorption (11.2 ± 1.2) and low desorption (13.8 ± 1.2); HpH-Hclay: high sorption (10.1 ± 1.1) and medium desorption (11.5 ± 1.4). Linear discriminant analysis of these soil attributes was used to classify other soils described in the literature with adsorption capacity. This analysis was able to identify soils with high and low sorption using the pH, organic matter, clay, and base saturation, demonstrating the enormous potential of the technique to group soils with different contamination risks for subterranean waters. Sugarcane crops in northeastern Brazil showed a higher pollution risk through the leaching of diuron. Multivariate analysis revealed significant diuron-related changes in the soil composition of different Brazilian regions; therefore, this statistical analysis can be used to improve understanding of herbicide behavior in soils.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6536495PMC
http://dx.doi.org/10.1038/s41598-019-44405-xDOI Listing

Publication Analysis

Top Keywords

sorption desorption
16
multivariate analysis
12
low sorption
12
sorption
10
desorption
9
diuron-related changes
8
changes soil
8
soil composition
8
composition brazilian
8
brazilian regions
8

Similar Publications

Gold(III) Ions Sorption on Amberlite XAD-16 Impregnated with TBP After Leaching Smart Card Chips.

Molecules

January 2025

Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031 Lublin, Poland.

Owing to the intensive development of electrical and electronic equipment, there is an increasing demand for precious metals, which are often used for its production. Due to their scarce supply, it is important to recover them from secondary sources. A promising way to recover precious metals are impregnated resins.

View Article and Find Full Text PDF

Evaluation of anion exchange resin for sorption of selenium (IV) from aqueous solutions.

BMC Chem

January 2025

Nuclear Chemistry Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, P.O. 13759, Cairo, Egypt.

In this work, selenium (IV) ions were adsorbed from aqueous solutions by the strongly basic anion exchange resin Amberlite IRA-400. The morphology of the resin before and after Se(IV) sorption was investigated using different techniques such as energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). To determine the ideal sorption conditions, a batch approach was used to examine the variables affecting Se(IV) sorption performance, including pH, shaking time, adsorbent dosage, initial metal ion concentration, and temperature.

View Article and Find Full Text PDF

Phosphate (P) is the plant macronutrient with, by far, the lowest solubility in soil. In soils with low P availability, the soil solution concentrations are low, often below 2 [µmol P/L]. Under these conditions, the diffusive P flux, the dominant P transport mechanism to plant roots, is severely restricted.

View Article and Find Full Text PDF

A sustainable biosorbent, silver nanoparticles-decorated coffee-ground waste (CWAg), was synthesized through a simple in-situ reduction method. CWAg is extensively characterized via SEM-EDX, PZC, FTIR, XRD, HR-TEM, and XPS analyses. The biosorbent was tested to remove chromium (Cr(VI)) and methylene blue (MB) from wastewater, and its antibacterial properties was evaluated.

View Article and Find Full Text PDF

Soil is regarded as a natural repository for strongly adsorbed pollutants since glyphosate (GLY) is preferentially adsorbed by the inorganic fraction of the soil, which may greatly limits its leaching. In this way, understanding how clay mineralogy influences the sorption and transport processes of glyphosate in soils with different mineralogical characteristics is highly relevant. In this work, two clay mineralogy contrasting soils were used to evaluate GLY retention: a Oxisol (OX) with high levels of iron oxides (amorphous and crystalline) and a Inceptisol (IN) with a predominance of kaolinite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!