Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ocean tides generate electromagnetic (EM) signals that are emitted into space and can be recorded with low-Earth-orbiting satellites. Observations of oceanic EM signals contain aggregated information about global transports of water, heat, and salinity. We utilize an artificial neural network (ANN) as a non-linear inversion scheme and demonstrate how to infer ocean heat content (OHC) estimates from magnetic signals of the lunar semi-diurnal (M2) tide. The ANN is trained using monthly OHC estimates based on oceanographic in-situ data from 1990-2015 and the corresponding computed tidal magnetic fields at satellite altitude. We show that the ANN can closely recover inter-annual and decadal OHC variations from simulated tidal magnetic signals. Using the trained ANN, we present the first OHC estimates from recently extracted tidal magnetic satellite observations. Such space-borne OHC estimates can complement the already existing in-situ measurements of upper ocean temperature and can also allow insights into abyssal OHC, where in-situ data are still very scarce.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6536534 | PMC |
http://dx.doi.org/10.1038/s41598-019-44397-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!