Frequency band selection (FBS) in rotating machinery fault diagnosis aims to recognize frequency band location including a fault transient out of a full band spectrum, and thus fault diagnosis can suppress noise influence from other frequency components. Impulsiveness and cyclostationarity have been recently recognized as two distinctive signatures of a transient. Thus, many studies have focused on developing quantification metrics of the two signatures and using them as indicators to guide FBS. However, most previous studies almost ignore another aspect of FBS, i.e. health reference, which significantly affect FBS performance. To address this issue, this paper investigates importance of a health reference and recognize it as the third critical aspect in FBS. With help of the health reference, the frequency band where the fault transient exists could be located. A novel approach based on classification is proposed to integrate all three aspects (impulsiveness, cyclostationarity, and health reference) for FBS. Classification accuracy is developed as a novel indicator to select the most sensitive frequency band for rotating machinery fault diagnosis. The proposed method (coined by accugram) has been validated on benchmark and experiment datasets. Comparison results show its effectiveness and robustness over conventional envelope analysis, the kurtogram, and the infogram.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2019.05.007DOI Listing

Publication Analysis

Top Keywords

frequency band
20
fault diagnosis
16
health reference
16
rotating machinery
12
machinery fault
12
novel approach
8
approach based
8
based classification
8
band selection
8
fault transient
8

Similar Publications

This study presents a very thin wideband linear polarization converter in transmission mode with near-unity conversion efficiency. The suggested converter consists of a periodic array on a single-layer substrate, two metallic layers and six vias. Metallic vias connect the upper and lower layers of the construction.

View Article and Find Full Text PDF

Understanding charge transport in semiconductor quantum dot (QD) assemblies is important for developing the next generation of solar cells and light-harvesting devices based on QD technology. One of the key factors that governs the transport in such systems is related to the hybridization between the QDs. Recent experiments have successfully synthesized QD molecules, arrays, and assemblies by directly fusing the QDs, with enhanced hybridization leading to high carrier mobilities and coherent band-like electronic transport.

View Article and Find Full Text PDF

Objective: Tinnitus and its pathophysiological mechanisms need more investigation because tinnitus may change the typical processing of sounds in the auditory system. Poor temporal resolution, which is not assessed with conventional subjective tinnitus evaluations, has been reported in some tinnitus sufferers.

Design: This study used a gap-in-noise paradigm to assess temporal resolution in tinnitus sufferers using both behavioural and electrophysiologic methods.

View Article and Find Full Text PDF

Direct Observation of All-Flat Bands Phononic Metamaterials.

Phys Rev Lett

December 2024

University of Connecticut, University of Connecticut, School of Mechanical, Aerospace, and Manufacturing Engineering, Storrs, Connecticut 06269, USA and Institute of Materials Science, Storrs, Connecticut 06269, USA.

Flat lines within a band structure represent constant frequency bands for all momentum values (i.e., they maintain zero group velocity for all wave numbers).

View Article and Find Full Text PDF

The integrated modulation of radiation and scattering provides an unprecedented opportunity to reduce the number of electromagnetic (EM) apertures in the platform while simultaneously enhancing communication and stealth performance. Nevertheless, achieving full-polarization, arbitrary amplitude, and phase modulation of radiation scattering remains a challenge. In this paper, a strategy that realizes space-time coding of radiation scattering within the same frequency band, which enables the simultaneous and independent modulation of amplitude and phase, is proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!