The increasingly competitive biopharmaceutical industry requires companies to focus on rapid and low-cost cell line development. Single-cell cloning (SCC) is a critical and high-value process for cell line development, and typically problematic because single cell proliferates slowly when cultivated at low cell densities. Conditioned media (CM) provide autocrine growth factors to facilitate single cell proliferation, thus improve SCC efficiency. However, conditioned media (CM) are not a feasible solution for industrial cell line development due to variation and cross-contamination concerns. Here, we have found an improvement in the SCC efficiency similar to CM when soy hydrolysate was supplemented in SCC media. Therefore, we concluded that hydrolysate can mimic the autocrine growth factor(s) effect to improve cloning efficiency observed in CM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tice.2019.05.005 | DOI Listing |
Cancers (Basel)
December 2024
Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
Fibroblast growth factors (FGFs) have diverse functions in the regulation of cell proliferation and differentiation in development, tissue maintenance, wound repair, and angiogenesis. The goal of this review paper is to (i) deliberate on the role of FGFs and FGF receptors (FGFRs) in different cancers, (ii) present advances in FGF-targeted cancer therapies, and (iii) explore cell signaling mechanisms that explain how FGF expression becomes dysregulated during cancer development. FGF is often mutated and overexpressed in cancer and the different FGF and FGFR isoforms have unique expression patterns and distinct roles in different cancers.
View Article and Find Full Text PDFMol Med Rep
March 2025
Department of Pathology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece.
Intrauterine growth restriction (IUGR) is the second most common obstetric complication after preterm labor. Appropriate trophoblast differentiation and placental structure, growth and function are key for the maintenance of pregnancy and normal fetal growth, development and survival. Extravillous trophoblast cell proliferation, migration and invasion are regulated by molecules produced by the fetomaternal interface, including autocrine factors produced by the trophoblast, such as insulin‑like growth factor (IGF)‑1.
View Article and Find Full Text PDFGlioblastoma tumors remain a formidable challenge for immune-based treatments because of their molecular heterogeneity, poor immunogenicity, and growth in the largely isolated and immunosuppressive neural environment. As the tumor grows, GBM cells change the composition and architecture of the neural extracellular matrix (ECM), affecting the mobility, survival, and function of immune cells such as tumor-associated microglia and infiltrated macrophages (TAMs). We have previously described the unique expression of the ECM protein EFEMP1/fibulin-3 in GBM compared to normal brain and demonstrated that this secreted protein promotes the growth of the GBM stem cell (GSC) population.
View Article and Find Full Text PDFBioact Mater
March 2025
School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China.
Despite significant advances in targeted therapies and immunotherapies, non-small cell lung cancer (NSCLC) continues to present a global health challenge, with a modest five-year survival rate of 28 %, largely due to the emergence of treatment-resistant and metastatic tumors. In response, we synthesized a novel bioactive compound, ethyl 6-chlorocoumarin-3-carboxylyl L-theanine (TClC), which significantly inhibited NSCLC growth, epithelial mesenchymal transition (EMT), migration, and invasion and tumor growth and metastasis without inducing toxicity. TClC disrupts autocrine loops that promote tumor progression, particularly in stem-like CD133-positive NSCLC (CD133+ LC) cells, which are pivotal in tumor metastasis.
View Article and Find Full Text PDFJ Exp Med
March 2025
Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.
In this issue of JEM, Sparano et al. (https://doi.org/10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!