Since the discovery of fatty acids, a niche has been carved for their vital role as adjuvants in drug delivery and as treatment for various diseases. The literature has repeatedly described the essential role of various fatty acids in treating a wide range of diseases and disorders, from central nervous system diseases to wound healing. The use of fatty acids has expanded to many horizons and in recent decades they have gained importance as drug delivery adjuvants in addition to their auxiliary benefits in treating various diseases. Although fatty acids aid in solving both formulation-based and therapeutic challenges to our knowledge, they have never been viewed as dual agents in modern scientific literature. The aim of this review was to provide this perspective and combine the very discreet literature about fatty acids, which includes their role as therapeutic adjuvants and drug delivery agents. It gives insights on the use of fatty acids in treating the diseases of the eye, skin, central nervous system, viral diseases, and so on. The review further discusses how the structure of fatty acids plays an important role in therapeutic activity and affects formulation stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nut.2019.03.008 | DOI Listing |
Sci Rep
December 2024
Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Children's Regional Medical Center, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang Province, China.
Williams Syndrome (WS) is a rare neurodevelopmental disorder with a prevalence of 1 in 7500 to 1 in 20,000 individuals, caused by a microdeletion in chromosome 7q11.23. Despite its distinctive clinical features, the underlying metabolic alterations remain largely unexplored.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1 Wangsimni-ro, Seongdong-Gu, Seoul, 04763, Korea.
Limited knowledge exists regarding biomarkers that predict treatment response in Lupus nephritis (LN). We aimed to identify potential molecular biomarkers to predict treatment response in patients with LN. We enrolled 66 patients with active LN who underwent renal biopsy upon enrollment.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurology, Union Hospital of Jilin University, Changchun, 130000, China.
Alzheimer's disease (AD) is a severe neurodegenerative disease, and the most common type of dementia, with symptoms of progressive cognitive dysfunction and behavioral impairment. Studying the pathogenesis of AD and exploring new targets for the prevention and treatment of AD is a very worthwhile challenge. Accumulating evidence has highlighted the effects of fatty acid metabolism on AD.
View Article and Find Full Text PDFSci Rep
December 2024
School of Basic Medicine, Dali University, Dali, 671003, Yunnan, China.
Resolvin D1 (RvD1) is an endogenous anti-inflammatory mediator that modulates the inflammatory response and promotes inflammation resolution. RvD1 has demonstrated neuroprotective effects in various central nervous system contexts; however, its role in the pathophysiological processes of intracerebral hemorrhage (ICH) and the potential protective mechanisms when combined with exercise rehabilitation remain unclear. A mouse model of ICH was established using collagenase, and treatment with RvD1 combined with three weeks of exercise rehabilitation significantly improved neurological deficits, muscle strength, learning, and memory in ICH mice while reducing anxiety-like behavior.
View Article and Find Full Text PDFSci Rep
December 2024
Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea.
Small intestinal organoids are similar to actual small intestines in structure and function and can be used in various fields, such as nutrition, disease, and toxicity research. However, the basal-out type is difficult to homogenize because of the diversity of cell sizes and types, and the Matrigel-based culture conditions. Contrastingly, the apical-out form of small intestinal organoids is relatively uniform and easy to manipulate without Matrigel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!