Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Collision avoidance between two walkers involves a mutual adaptation to speed and orientation in order to successfully avoid a collision. Minimum Predicted Distance (MPD) is the distance at which two walkers would collide if their speed and path trajectory were maintained at first sight of one another. MPD has been used to describe the risk of collision and its evolution over time between two adult walkers when on a collision course. Middle-aged children have been shown to have poor perception-action coupling during static and dynamic collision avoidance tasks. Research has yet to examine whether perception-action coupling deficits persist in a dynamic collision avoidance task involving a child and another walker.
Research Question: Can the metric MPD(t) be used to examine collision avoidance strategies between children and adults?
Methods: Eighteen children (age: 10 ± 1.5 years) and eighteen adults (34 ± 9.6 years) walked along a 12.6 m pathway while avoiding another participant (child or adult). Groups of three children and three adults were recruited per session. Trials were randomized equally such that each adult interacted with another adult 20 times, each child interacted with another child 20 times, and each adult interacted with a child 21 times, for a total of 141 trials. 3D kinematic data of each participant's head was recorded using the Vicon system.
Results: The results demonstrated: (1) MPD(t) can be used to predict future collisions in children, (2) MPD(t) is an absolute measure that is consistently lower when a child is involved compared to two adult walkers, (3) the individual passing second, even when it is a child, contributes more to MPD(t) than the walker passing first.
Significance: It appears children have developed adult-like strategies during a collision avoidance task involving two walkers. Body anthropometrics should be considered when determining collision avoidance strategies between children and adults.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gaitpost.2019.05.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!