Background: In healthy populations, irregular sleep patterns are associated with delayed sleep and poor functional/mood outcomes. Currently, it is unknown whether irregular sleep contributes to poor functional/mood outcomes in individuals with Delayed Sleep-Wake Phase Disorder (DSWPD).
Methods: In 170 patients with DSWPD, we collected sleep-wake patterns, dim light melatonin onset (DLMO), and functional/mood outcomes. The Sleep Regularity Index (SRI) and other sleep timing metrics were computed. Correlations of SRI were computed with phase angle (difference between DLMO and desired bedtime), sleep timing and quality variables, daytime function, sleep-related daytime impairment, mood, and insomnia symptom severity. Path analyses assessed whether SRI or total sleep time mediated the associations between sleep onset time and phase angle with daytime functioning, sleep-related impairment, and mood outcomes.
Results: Higher SRI was associated with earlier sleep and longer total sleep time, but did not relate to sleep quality, daytime function, or mood outcomes. Path analysis showed that phase angle was directly associated with all outcome variables, whereas sleep onset time was not directly associated with any. SRI mediated the effects of sleep onset time and phase angle on daytime function. Total sleep time mediated the effects of sleep onset time and phase angle on sleep-related impairment.
Conclusion: Individuals with DSWPD who have more delayed sleep and a greater phase angle also have more irregular sleep. This suggests that it is not delayed sleep timing per se that drives poor functional outcomes in DSWPD, but rather the timing of sleep relative to circadian phase and resultant irregular sleep patterns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.sleep.2019.03.009 | DOI Listing |
Sci Rep
January 2025
Multifunctional Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India.
The utilization of single crystals is exponentially growing in optoelectronic devices due to their exceptional benefits, including high phase purity and the absence of grain boundaries. However, achieving single crystals with a porous structure poses significant challenges. In this study, we present a method for fabricating porous single crystals (porous-SC) of CsAgBiBr and related halide double perovskites using an infrared-assisted spin coating technique.
View Article and Find Full Text PDFSci Rep
January 2025
School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, China.
To investigate the effect of the filter device on the cleanliness of molten steel and the flow field distribution within the tundish. The tundish filters were designed into five groups of pores with 20°, 25°, 30°, 35° and 40° elevation angles, and the flow field distribution and impurity removal rate of molten steel were calculated by Discrete Phase Model (DPM). The results showed that the removal rate of impurity in the molten steel could be significantly improved by using the tundish filter with elevation angle.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic.
Radio frequency magnetron co-sputtering method employing GeTe and Sc targets was exploited for the deposition of Sc doped GeTe thin films. Different characterization techniques (scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction, atomic force microscopy, sheet resistance temperature-dependent measurements, variable angle spectroscopic ellipsometry, and laser ablation time-of-flight mass spectrometry) were used to evaluate the properties of as-deposited (amorphous) and annealed (crystalline) Ge-Te-Sc thin films. Prepared amorphous thin films have GeTe, GeTeSc, GeTeSc, GeTeSc and GeTeSc chemical composition.
View Article and Find Full Text PDFNat Commun
January 2025
Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Electrochemical reduction of carbon dioxide (CO) into sustainable fuels and base chemicals requires precise control over and understanding of activity, selectivity and stability descriptors of the electrocatalyst under operation. Identification of the active phase under working conditions, but also deactivation factors after prolonged operation, are of the utmost importance to further improve electrocatalysts for electrochemical CO conversion. Here, we present a multiscale in situ investigation of activation and deactivation pathways of oxide-derived copper electrocatalysts under CO reduction conditions.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, 999077, China.
Terahertz (THz) lens constitutes a vital component in the THz system. Metasurfaces-based THz metalenses and classical bulky lenses are severely constrained by chromatic/ spherical aberration and the diffraction limit. Consequently, achromatic super-resolution THz lenses are urgently needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!