Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Myrcia is the largest exclusively Neotropical genus of the plant family Myrtaceae with c. 770 species. Although several studies have elucidated the relationships within particular sections of the genus, to date no phylogeny has been produced that includes a broad taxonomic and geographic representation. Here we present a phylogenetic hypothesis of Myrcia and close relatives comprising 253 species and based on two nuclear and seven plastid markers. We combine previously available sequence data with 234 new sequences of the genus Myrcia for this study. We use this phylogeny to investigate the evolution of selected morphological traits and to infer the biogeographic history of the genus. Our results yield a highly supported phylogenetic tree where the Myrceugenia group is sister to the Myrcia and Plinia groups. Five Myrcia species previously considered unplaced emerge in a newly circumscribed clade. The monophyly of two Myrcia sections previously considered uncertain, Aulomyrcia and Gomidesia, are confirmed with strong support. Flowers with free calyx lobes, 2-locular ovaries, and anthers with symmetrical thecae are ancestral features of Myrcia. The Myrcia sect. Gomidesia is highly supported and recovered as monophyletic, with asymmetric anthers that retain their curvature after dehiscence as a morphological synapomorphy. The Atlantic Forest is the most likely ancestral area of the genus and most of its internal clades, from where multiple lineages colonized different regions of South and Central America, in particular the Brazilian Cerrado through multiple unidirectional range expansions. The southern Atlantic Forest is the ancestral area for Myrcia sect. Gomidesia, with lineages reaching the northern Atlantic Forest, Cerrado, Yungas, and other savanna vegetation of South America. Our results provide a solid backbone for further evolutionary and taxonomic work and clarify several previously uncertain relationships in this mega-diverse plant group, and shed light on its geographical range evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2019.05.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!