A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Holistic QbD approach for hot-melt extrusion process design space evaluation: Linking materials science, experimentation and process modeling. | LitMetric

AI Article Synopsis

  • The study explored how material properties and processing conditions impact the manufacturing performance of amorphous solid dispersions using hot-melt extrusion (HME).
  • The research focused on the effects of copovidone melt rheology, with and without the plasticizing surfactant polysorbate 80, while varying process parameters like barrel temperature and screw speed.
  • Findings indicated that the plasticized formulation allowed for a broader range of processing conditions and revealed a link between the residual crystallinity of the drug (telmisartan) and the extruder's melt temperature, supporting the use of temperature-dependent solubility diagrams for optimizing HME processes.

Article Abstract

The aim of this work was to investigate the relationship between formulation material properties, process parameters and process performance for the manufacturing of amorphous solid dispersions via hot-melt extrusion (HME) using experimentation coupled with process modeling. Specifically, we evaluated the impact of the matrix copovidone melt rheology with and without the addition of a plasticizing surfactant, polysorbate 80, while also varying the process parameters, barrel temperature and screw speed, and keeping fill volume constant. To correlate the process performance to a critical quality attribute, we used telmisartan as an indicator substance by processing at temperatures below its solubility temperature in the polymeric matrix. We observed a broader design space of HME processes for the plasticized formulation with respect to screw speed than for the copovidone-only matrix formulation. This observation was determined by the range of observed melt temperatures in the extruder, both measured and simulated. The reason was not primarily linked to a reduced shear-thinning behavior, characterized by the power law index, n, but instead more to an overall reduced melt viscosity during extrusion and zero-shear rate viscosity, η, accordingly. We also found that the amount of residual crystallinity of telmisartan correlated with the simulated maximum melt temperature in the extruder barrel. This finding confirmed the applicability of the temperature-dependent API-matrix solubility phase diagram for HME to process development. Given the complex inter-dependent relationships between material properties, process and performance, process modeling combined with reduced laboratory experimentation was established as a holistic approach for the evaluation of Quality-by-Design-based HME process design spaces.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2019.05.021DOI Listing

Publication Analysis

Top Keywords

process modeling
12
process performance
12
process
11
hot-melt extrusion
8
process design
8
design space
8
material properties
8
properties process
8
process parameters
8
screw speed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!