Contamination of soils and sediments with the highly persistent hexachlorocyclohexanes (HCHs) continues to be a threat for humans and the environment. Despite the existence of bacteria capable of biodegradation and cometabolic transformation of HCH isomers, such processes occur over time scales of decades and are thus challenging to assess. Here, we explored the use of compound-specific isotope analysis (CSIA) to track the aerobic biodegradation and biotransformation pathways of the most prominent isomers, namely, (-)-α-, (+)-α-, β-, γ-, and δ-HCH, through changes of their C and H isotope composition in assays of LinA2 and LinB enzymes. Dehydrochlorination of (+)-α-, γ-, and δ-HCH catalyzed by LinA2 was subject to substantial C and H isotope fraction with apparent C- and H-kinetic isotope effects (AKIEs) of up to 1.029 ± 0.001 and 6.7 ± 2.9, respectively, which are indicative of bimolecular eliminations. Hydrolytic dechlorination of δ-HCH by LinB exhibited even larger C but substantially smaller H isotope fractionation with C- and H-AKIEs of 1.073 ± 0.006 and 1.41 ± 0.04, respectively, which are typical for nucleophilic substitutions. The systematic evaluation of isomer-specific phenomena showed that, in addition to contaminant uptake limitations, diffusion-limited turnover ((-)-α-HCH), substrate dissolution (β-HCH), and potentially competing reactions catalyzed by constitutively expressed enzymes might bias the assessment of HCH biodegradation by CSIA at contaminated sites.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.9b01007DOI Listing

Publication Analysis

Top Keywords

compound-specific isotope
8
isotope analysis
8
γ- δ-hch
8
isotope
6
assessing aerobic
4
aerobic biotransformation
4
biotransformation hexachlorocyclohexane
4
hexachlorocyclohexane isomers
4
isomers compound-specific
4
analysis contamination
4

Similar Publications

Stable isotope analysis has become a valuable tool for studying food chain processes and verifying the authenticity and geographical origin of typical products. The analysis is particularly important for those foods with geographical indications, such as Aceto Balsamico Tradizionale di Modena labelled with the protected designation of origin mark (ABTM PDO) and Aceto Balsamico di Modena with the protected geographical indication (ABM PGI). Understanding how the aging process affects the isotopic composition of specific compounds in ABTM is important for distinguishing between traditional and non-traditional products, as well as for verifying their authenticity.

View Article and Find Full Text PDF

Acetochlor degradation in anaerobic microcosms with hyporheic sediments: Insights from biogeochemical data, transformation products, and isotope analysis.

Water Res

December 2024

Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, PR China. Electronic address:

Steep redox gradients and diverse microbial communities in the anaerobic hyporheic zone create complex pathways for the degradation of herbicides, often linked to various terminal electron-accepting processes (TEAPs). Identifying the degradation pathways and their controlling factors under various TEAPs is of great significance for understanding mechanisms of water purification in the hyporheic zone. However, current research on herbicides in this area remains insufficient.

View Article and Find Full Text PDF

Carbon, hydrogen, nitrogen and chlorine isotope fractionation during 3-chloroaniline transformation in aqueous environments by direct photolysis, TiO photocatalysis and hydrolysis.

Water Res

December 2024

School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15 04318 Leipzig, Germany; Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany. Electronic address:

This study investigates carbon, hydrogen, nitrogen and chlorine isotope fractionation during the transformation of 3-chloroaniline (3-CA) via direct photolysis, TiO photocatalytic degradation at neutral condition and hydrolysis at pH 3, pH 7 and pH 11. Direct photolysis and ∙OH reaction (UV/HO) showed similar inverse isotope fractionation (ε) for carbon (1.9 ± 0.

View Article and Find Full Text PDF

Wildlife trade investigations benefit from multivariate stable isotope analyses.

Biol Rev Camb Philos Soc

December 2024

School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, SAR, China.

The investigation of wildlife trade and crime has benefitted from advances in technology and scientific development in a variety of fields. Stable isotope analysis (SIA) represents one rapidly developing approach that has considerable potential to contribute to wildlife trade investigation, especially in complementing other methods including morphological, genetic, and elemental approaches. Here, we review recent progress in the application of SIA in wildlife trade research to highlight strengths, shortcomings, and areas for development in the future.

View Article and Find Full Text PDF

Insights from multiple stable isotopes (C, N, Cl) into the photodegradation of herbicides atrazine and metolachlor.

Chemosphere

February 2025

Département des sciences de la Terre et de l'atmosphère, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada; Geotop Research Centre, Montréal, QC, H2X 3Y7, Canada. Electronic address:

Many processes can contribute to the attenuation of the frequently detected and toxic herbicides atrazine and metolachlor in surface water, including photodegradation. Multi-element compound-specific isotope analysis has the potential to decipher between these different degradation pathways as Cl is a promising tool for both pathway identification and a sensitive indicator of degradation for both atrazine and metolachlor. In this study, photodegradation experiments of atrazine and metolachlor were conducted under simulated sunlight in buffered solutions (direct photodegradation) and with nitrate (indirect photodegradation by OH radicals) to determine kinetics, transformation products and isotope fractionation for C, N and for the first time Cl.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!