VirWaTest, A Point-of-Use Method for the Detection of Viruses in Water Samples.

J Vis Exp

Laboratory of Viruses Contaminants of Water and Food (VIRCONT), Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, University of Barcelona;

Published: May 2019

Viruses excreted by humans and animals may contaminate water sources and pose a risk to human health when this water is used for drinking, food irrigation, washing, etc. The classical fecal bacteria indicator does not always check for the presence of viral pathogens so the detection of viral pathogens and viral indicators is relevant in order to adopt measures of risk mitigation, especially in humanitarian scenarios and in areas where water-borne viral outbreaks are frequent. At present, several commercial tests allowing the quantification of fecal indicator bacteria (FIB) are available for testing at the point of use. However, such commercial tests are not available for the detection of viruses. The detection of viruses in environmental water samples requires concentrating several liters into smaller volumes. Moreover, once concentrated, the detection of viruses relies on methods such as nucleic acid extraction and molecular detection (e.g., polymerase chain reaction [PCR]-based assays) of the viral genomes. The method described here allows the concentration of viruses from 10 L water samples, as well as the extraction of viral nucleic acids at the point of use, with simple and portable equipment. This allows the testing of water samples at the point of use for several viruses and is useful in humanitarian scenarios, as well as at any context where an equipped laboratory is not available. Alternatively, the method allows concentrating viruses present in water samples and the shipping of the concentrate to a laboratory at room temperature for further analysis.

Download full-text PDF

Source
http://dx.doi.org/10.3791/59463DOI Listing

Publication Analysis

Top Keywords

water samples
20
detection viruses
16
viruses water
12
viruses
8
viral pathogens
8
humanitarian scenarios
8
commercial tests
8
water
7
detection
6
viral
6

Similar Publications

Construction of single probes for simultaneous detection of common trivalent metal ions has attracted much attention due to higher efficiency in analysis and cost. A naphthalimide-based fluorescent probe K1 was synthesized for selective detection of Al, Cr and Fe ions. Fluorescence emission intensity at 534 nm of probe K1 in DMSO/HO (9:1, v/v) was significantly enhanced upon addition of Al, Cr and Fe ions while addition of other metal ions (Li, Na, K, Ag, Cu, Fe, Zn, Co, Ni, Mn, Sr, Hg, Ca, Mg, Ce, Bi and Au) did not bring about substantial change in fluorescence emission.

View Article and Find Full Text PDF

We report a bithiophene-based fluorescence probe BDT (2,2'-(((1 E, 1'E)-[2,2'-bithiophene]-5,5'-diylbis(methaneylylidene))bis(azaneylylidene))bis(4-(tert-butyl)phenol)) for recognizing ClO. BDT selectively responded to ClO, leading to a blue fluorescence enhancement in a mixture of DMF/HEPES buffer (9:1, v/v). Importantly, BDT showed an ultrafast response (within 1 s) to ClO among the fluorescent turn-on chemosensors based on bithiophene.

View Article and Find Full Text PDF

Antifungal activity of different extractions of drone larvae (apilarnil).

Nat Prod Res

January 2025

Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.

Drone larvae (DL) has many biological activities thanks to the bioactive components it contains, but there are very few studies on its antimicrobial activity. The aim of this research was to determine the antifungal activity of DL (raw and lyophilised) water and ethanol extracts against fluconazole (FLU) sensitive and resistant yeast strains. The 87 fungal strains obtained from clinical samples were identified by phenotypic and molecular methods, and broth microdilution test was used for antifungal activity.

View Article and Find Full Text PDF

Aim: This study aimed to explore the possible bidirectional interrelations between fructose-induced metabolic syndrome (MS) and apical periodontitis (AP).

Methodology: Twenty-eight male Wistar rats were distributed into four groups (n = 7, per group): Control (C), AP, Fructose Consumption (FRUT) and Fructose Consumption and AP (FRUT+AP). The rats in groups C and AP received filtered water, while those in groups FRUT and FRUT+AP received a 20% fructose solution mixed with water to induce MS.

View Article and Find Full Text PDF

Quantifying the Impact of Soil Moisture Sensor Measurements in Determining Green Stormwater Infrastructure Performance.

Sensors (Basel)

December 2024

Department of Civil and Environmental Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.

The ability to track moisture content using soil moisture sensors in green stormwater infrastructure (GSI) systems allows us to understand the system's water management capacity and recovery. Soil moisture sensors have been used to quantify infiltration and evapotranspiration in GSI practices both preceding, during, and following storm events. Although useful, soil-specific calibration is often needed for soil moisture sensors, as small measurement variations can result in misinterpretation of the water budget and associated GSI performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!