A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis Method for Cellulose Nanofiber Biotemplated Palladium Composite Aerogels. | LitMetric

Here, a method to synthesize cellulose nanofiber biotemplated palladium composite aerogels is presented. Noble metal aerogel synthesis methods often result in fragile aerogels with poor shape control. The use of carboxymethylated cellulose nanofibers (CNFs) to form a covalently bonded hydrogel allows for the reduction of metal ions such as palladium on the CNFs with control over both nanostructure and macroscopic aerogel monolith shape after supercritical drying. Crosslinking the carboxymethylated cellulose nanofibers is achieved using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in the presence of ethylenediamine. The CNF hydrogels maintain their shape throughout synthesis steps including covalent crosslinking, equilibration with precursor ions, metal reduction with high concentration reducing agent, rinsing in water, ethanol solvent exchange, and CO2 supercritical drying. Varying the precursor palladium ion concentration allows for control over the metal content in the final aerogel composite through a direct ion chemical reduction rather than relying on the relatively slow coalescence of pre-formed nanoparticles used in other sol-gel techniques. With diffusion as the basis to introduce and remove chemical species into and out of the hydrogel, this method is suitable for smaller bulk geometries and thin films. Characterization of the cellulose nanofiber-palladium composite aerogels with scanning electron microscopy, X-ray diffractometry, thermal gravimetric analysis, nitrogen gas adsorption, electrochemical impedance spectroscopy, and cyclic voltammetry indicates a high surface area, metallized palladium porous structure.

Download full-text PDF

Source
http://dx.doi.org/10.3791/59176DOI Listing

Publication Analysis

Top Keywords

composite aerogels
12
cellulose nanofiber
8
nanofiber biotemplated
8
biotemplated palladium
8
palladium composite
8
carboxymethylated cellulose
8
cellulose nanofibers
8
supercritical drying
8
cellulose
5
palladium
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!