As individuals increasingly live in cities, methods to study their everyday movements and the data that can be collected becomes important and valuable. Eye-tracking informatics are known to connect to a range of feelings, health conditions, mental states and actions. But because vision is the result of constant eye-movements, teasing out what is important from what is noise is complex and data intensive. Furthermore, a significant challenge is controlling for what people look at compared to what is presented to them. The following presents a methodology for combining and analyzing eye-tracking on a video of a natural and complex scene with a machine learning technique for analyzing the content of the video. In the protocol we focus on analyzing data from filmed videos, how a video can be best used to record participants' eye-tracking data, and importantly how the content of the video can be analyzed and combined with the eye-tracking data. We present a brief summary of the results and a discussion of the potential of the method for further studies in complex environments.

Download full-text PDF

Source
http://dx.doi.org/10.3791/58459DOI Listing

Publication Analysis

Top Keywords

eye-tracking data
12
content video
8
data
6
video
6
combining eye-tracking
4
data analysis
4
analysis video
4
video content
4
content free-viewing
4
free-viewing video
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!