Intellectual disability (ID), defined as IQ<70, occurs in 2.5% of individuals. Elucidating the underlying molecular mechanisms is essential for developing therapeutic strategies. Several of the identified genes that link to ID in humans are predicted to cause malfunction of β-catenin pathways, including mutations in CTNNB1 (β-catenin) itself. To identify pathological changes caused by β-catenin loss in the brain, we have generated a new β-catenin conditional knockout mouse (β-cat cKO) with targeted depletion of β-catenin in forebrain neurons during the period of major synaptogenesis, a critical window for brain development and function. Compared with control littermates, β-cat cKO mice display severe cognitive impairments. We tested for changes in two β-catenin pathways essential for normal brain function, cadherin-based synaptic adhesion complexes and canonical Wnt (Wingless-related integration site) signal transduction. Relative to control littermates, β-cat cKOs exhibit reduced levels of key synaptic adhesion and scaffold binding partners of β-catenin, including N-cadherin, α-N-catenin, p120ctn and S-SCAM/Magi2. Unexpectedly, the expression levels of several canonical Wnt target genes were not altered in β-cat cKOs. This lack of change led us to find that β-catenin loss leads to upregulation of γ-catenin (plakoglobin), a partial functional homolog, whose neural-specific role is poorly defined. We show that γ-catenin interacts with several β-catenin binding partners in neurons but is not able to fully substitute for β-catenin loss, likely due to differences in the N-and C-termini between the catenins. Our findings identify severe learning impairments, upregulation of γ-catenin and reductions in synaptic adhesion and scaffold proteins as major consequences of β-catenin loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6736100PMC
http://dx.doi.org/10.1093/hmg/ddz115DOI Listing

Publication Analysis

Top Keywords

learning impairments
4
impairments molecular
4
molecular changes
4
changes brain
4
brain caused
4
caused β-catenin
4
β-catenin loss
4
loss intellectual
4
intellectual disability
4
disability defined
4

Similar Publications

Alzheimer's disease (AD) is a progressive neurological condition characterized by a loss in cognitive functions, with no disease-modifying medication now available. It is crucial for early detection and treatment of Alzheimer's disease before clinical manifestation. The stage between cognitively healthy older persons and AD is known as mild cognitive impairment (MCI).

View Article and Find Full Text PDF

The transmembrane protein Synapse Differentiation Induced Gene 4 (SynDIG4) functions as an auxiliary factor of AMPA receptors (AMPARs) and plays a critical role in excitatory synapse plasticity as well as hippocampal-dependent learning and memory. Mice lacking SynDIG4 have reduced surface expression of GluA1 and GluA2 and are impaired in single tetanus-induced long-term potentiation and NMDA receptor (NMDAR)-dependent long-term depression. These findings suggest that SynDIG4 may play an important role in regulating AMPAR distribution through intracellular trafficking mechanisms; however, the precise roles by which SynDIG4 governs AMPAR distribution remain unclear.

View Article and Find Full Text PDF

SYNGAP1 is a major regulator of synaptic plasticity through its interaction with synaptic scaffold proteins and modulation of Ras and Rap GTPase signaling pathways. mutations in humans are often associated with intellectual disability, epilepsy, and autism spectrum disorder. heterozygous loss-of-function results in impaired LTP, premature maturation of dendritic spines, learning disabilities and seizures in mice.

View Article and Find Full Text PDF

More work is needed to establish the validity of the Alternative Model of Personality Disorders (AMPD) in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Acceptance of the AMPD as the primary model of personality disorder requires identifying neurocognitive validators of AMPD-defined personality functioning and demonstrating superiority of the AMPD over the traditional categorical model of personality disorder. It is also important to establish the utility of the AMPD in a developmental context given evidence that personality disorder emerges in adolescence.

View Article and Find Full Text PDF

Connexin 43 contributes to perioperative neurocognitive disorder by attenuating perineuronal net of hippocampus in aged mice.

Cell Mol Life Sci

January 2025

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative MedicineSchool of Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1239 Sanmen Road, Hongkou District, Shanghai, 200434, China.

Background: Perioperative neurocognitive disorder (PND) is a prevalent form of cognitive impairment in elderly patients following anesthesia and surgery. The underlying mechanisms of PND are closely related to perineuronal nets (PNNs). PNNs, which are complexes of extracellular matrix primarily surrounding neurons in the hippocampus, play a critical role in neurocognitive function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!