Strong magnetic exchange and frustrated ferrimagnetic order in a weberite-type inorganic-organic hybrid fluoride.

Philos Trans A Math Phys Eng Sci

2 Institut des Molécules et Matériaux du Mans (IMMM) UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9 , France.

Published: July 2019

We combine powder neutron diffraction, magnetometry and Fe Mössbauer spectrometry to determine the nuclear and magnetic structures of a strongly interacting weberite-type inorganic-organic hybrid fluoride, FeF(H taz). In this structure, Fe and Fe cations form magnetically frustrated hexagonal tungsten bronze layers of corner-sharing octahedra. Our powder neutron diffraction data reveal that, unlike its purely inorganic fluoride weberite counterparts which adopt a centrosymmetric Imma structure, the room-temperature nuclear structure of FeF(H taz) is best described by a non-centrosymmetric Ima2 model with refined lattice parameters a = 9.1467(2) Å, b = 9.4641(2) Å and c = 7.4829(2) Å. Magnetic susceptibility and magnetization measurements reveal that strong antiferromagnetic exchange interactions prevail in FeF(H taz) leading to a magnetic ordering transition at T = 93 K. Analysis of low-temperature powder neutron diffraction data indicates that below T, the Fe sublattice is ferromagnetic, with a moment of 4.1(1) µ per Fe at 2 K, but that an antiferromagnetic component of 0.6(3) µ cants the main ferromagnetic component of Fe, which aligns antiferromagnetically to the Fe sublattice. The zero-field and in-field Mössbauer spectra give clear evidence of an excess of high-spin Fe species within the structure and a non-collinear magnetic structure. This article is part of the theme issue 'Mineralomimesis: natural and synthetic frameworks in science and technology'.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2018.0224DOI Listing

Publication Analysis

Top Keywords

powder neutron
12
neutron diffraction
12
fefh taz
12
weberite-type inorganic-organic
8
inorganic-organic hybrid
8
hybrid fluoride
8
diffraction data
8
structure
5
strong magnetic
4
magnetic exchange
4

Similar Publications

Selective production of olefins from methanol over a heteroatomic SAPO-34 zeolite.

Sci Bull (Beijing)

January 2025

Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK; College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China. Electronic address:

The methanol-to-olefins (MTO) process has the potential to bridge future gaps in the supply of sustainable lower olefins. Promoting the selectivity of propylene and ethylene and revealing the catalytic role of active sites are challenging goals in MTO reactions. Here, we report a novel heteroatomic silicoaluminophosphate (SAPO) zeolite, SAPO-34-Ta, which incorporates active tantalum(V) sites within the framework to afford an optimal distribution of acidity.

View Article and Find Full Text PDF

Chemically tuned organic-inorganic hybrid halide perovskites based on bromide and chloride anions CH(NH)Pb(BrCl) (CH(NH): formamidinium ion, FA) have been crystallized and investigated by neutron powder diffraction (NPD), single crystal X-ray diffraction (SCXRD), scanning electron microscopy (SEM) and UV-vis spectroscopy. FAPbBr and FAPbCl experience successive phase transitions upon cooling, lowering the symmetry from cubic to orthorhombic phases; however, these transitions are not observed for the mixed halide phases, probably due to compositional disorder. The band-gap engineering brought about by the chemical doping of FAPb (BrCl) perovskites (x = 0.

View Article and Find Full Text PDF

Phase Evolution of Li-Rich Layered Li-Mn-Ni-(Al)-O Cathode Materials upon Heat Treatments in Air.

Materials (Basel)

December 2024

Arrhenius Laboratory, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden.

The phase evolution of Li-rich Li-Mn-Ni-(Al)-O cathode materials upon heat treatments in the air at 900 °C was studied by X-ray and neutron powder diffraction. In addition, the structures of LiMnAl NiO, x = 0.0, 0.

View Article and Find Full Text PDF

Magnetoplumbites are one of the most broadly studied families of hexagonal ferrites, typically with high magnetic ordering temperatures, making them excellent candidates for permanent magnets. However, magnetic frustration is rarely observed in magnetoplumbites. Herein, the discovery, synthesis, and characterization of the first Mn-based magnetoplumbite, as well as the first magnetoplumbite involving pnictogens (Sb), ASbMnO (A = K or Rb) are reported.

View Article and Find Full Text PDF

Oxygen vacancies in Ruddlesden-Popper (RP) perovskites (PV) [AO][ABO] play a pivotal role in engineering functional properties and thus understanding the relationship between oxygen-vacancy distribution and physical properties can open up new strategies for fine manipulation of structure-driven functionalities. However, the structural origin of preferential distribution for oxygen vacancies in RP structures is not well understood, notably in the single-layer ( = 1) RP-structure. Herein, the = 1 RP phase SrNdZnO was rationally designed and structurally characterized by combining three-dimensional (3D) electron diffraction and neutron powder diffraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!