Synthesis, biological evaluation and molecular docking studies of novel 3,5-disubstituted 2,4-thiazolidinediones derivatives.

Bioorg Chem

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das National Institute of Technology and Management, Lucknow 226028, Uttar Pradesh, India; Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy, Moga 142001, Punjab, India. Electronic address:

Published: August 2019

A series of thirteen novel 2,4-thiazolidinedione derivatives were synthesized through three step reaction procedure. The title compounds were synthesized by Knoevenagel condensation at the 5th position of the 2,4-thiazolidinedione ring. Various physicochemical and spectral studies were conducted to characterize the synthesized derivatives including- IR, Mass, H NMR, C NMR and elemental analysis. The derivatives were screened for in vivo anti diabetic, in vivo anti-inflammatory and in vitro free radical scavenging activities by carrageenan induced rat paw edema method, alloxan induced diabetes in wistar rats method and FRAP (ferric reducing antioxidant power) method respectively. Some of the derivatives emerged out as potent antidiabetic, anti inflammatory and free radical scavenging agents. Molecular docking was carried out to investigate some possible structural insights into the potential binding patterns of the most potent anti-diabetic molecules NB7,NB12 and NB13 with the active sites of target PPARγ (PDB ID: 2PRG) using MOE software. Dichloro derivative compound NB-7 has shown great potential in the present study as it not only has maximum antidiabetic activity but also possess excellent anti-inflammatory and antioxidant potential.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2019.102993DOI Listing

Publication Analysis

Top Keywords

molecular docking
8
free radical
8
radical scavenging
8
derivatives
5
synthesis biological
4
biological evaluation
4
evaluation molecular
4
docking studies
4
studies novel
4
novel 35-disubstituted
4

Similar Publications

A two-dimensional fluorescence and chemiluminescence orthogonal probe for discriminating and quantifying similar proteins.

Chem Sci

January 2025

Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, Center of Photosensitive Chemicals Engineering, East China University of Science and Technology Shanghai 200237 China

Given that proteins with minor variations in amino acid sequences cause distinct functional outcomes, identifying and quantifying similar proteins is crucial, but remains a long-standing challenge. Herein, we present a two-dimensional orthogonal fluorescence and chemiluminescence design strategy for the probe DCM-SA, which is sequentially activated by albumin-mediated hydrolysis, exhibiting light-up fluorescence and photo-induced cycloaddition generating chemiluminescence, enabling orthogonal signal amplification for discrimination of subtle differences between similar proteins. By orthogonalizing these dual-mode signals, a two-dimensional work curve of fluorescence and chemiluminescence is established to distinguish and quantify similar proteins HSA and BSA.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) include atherosclerosis, which is an inflammatory disease of large and medium vessels that leads to atherosclerotic plaque formation. The key factors contributing to the onset and progression of atherosclerosis include the pro-inflammatory cytokines interferon (IFN)α and IFNγ and the pattern recognition receptor (PRR) Toll-like receptor 4 (TLR4). Together, they trigger the activation of IFN regulatory factors (IRFs) and signal transducer and activator of transcription (STAT)s.

View Article and Find Full Text PDF

Introduction: Despite evidence of the efficacy of decursinol angelate (DA), a prescription medication derived farom traditional Chinese medicine, in alleviating inflammatory bowel disease (IBD), the precise mechanisms behind its action remain unclear.

Methods: Lipopolysaccharides (LPS) and dextran sodium sulfate (DSS) induction were used as and models of IBD, respectively, to assess the role of DA in alleviating IBD. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the expression levels of pro-inflammatory cytokines in mouse serum, Western blot was performed to detect the expression of TXNIP/NLRP3 pathway tight junction (TJ) proteins in colon tissues and cells, and immunohistochemistry, immunofluorescence and immunohistochemistry, immunofluorescence and qRT-PCR were used to validate the proteins related to this signaling pathway.

View Article and Find Full Text PDF

An allelic atlas of immunoglobulin heavy chain variable regions reveals antibody binding epitope preference resilient to SARS-CoV-2 mutation escape.

Front Immunol

January 2025

State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.

Background: Although immunoglobulin (Ig) alleles play a pivotal role in the antibody response to pathogens, research to understand their role in the humoral immune response is still limited.

Methods: We retrieved the germline sequences for the IGHV from the IMGT database to illustrate the amino acid polymorphism present within germline sequences of IGHV genes. We aassembled the sequences of IgM and IgD repertoire from 130 people to investigate the genetic variations in the population.

View Article and Find Full Text PDF

Background: Dachaihu decoction (DCHD) is a common Chinese medicine formula against sepsis-induced acute lung injury (SALI). PANoptosis is a novel type of programmed cell death. Nevertheless, The mechanisms of DCHD against SALI via anti-PANoptosis remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!