Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present here the development of a photochemical model used to quantify the risk to photodegradation of a solid drug substance. A key feature of the proposed model development is streamlined estimation of the dependence of the absorption spectra and the quantum yield to the wavelength. A mathematical description of the relationship between the quantum yield and the wavelength enables estimation of photodegradation kinetics under any light anticipated to be encountered in the manufacturing environment. The system studied here consisted of a first order irreversible transformation (A → B(1Φ)) and the formalism strongly suggested the quantum yield was constant over the relevant wavelength range. The predictive power of the model enabled the design of a control strategy to limit the formation of the photo-degradant to very low levels. Also presented are insights obtained from quantum mechanical modeling of the electronic transitions associated with the UV absorption spectra.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2019.05.054 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!