Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ethnopharmacological Relevance: Dryopteris fragrans (L.) Schott (D. fragrans), a deciduous perennial herb, has been traditionally used for treatment of various skin diseases in Heilongjiang province of China for many years. Phloroglucinol derivatives extracted from D. fragrans were the most effective fraction against dermatophytes. Isoflavaspidic acid PB is a typically phloroglucinol derivative which extracted from D. fragrans and has been reported to exert anti-fungal activities against several dermatophytes.
Aim Of The Study: This study aimed to evaluate anti-fungal and anti-biofilm activity of isoflavaspidic acid PB on planktonic and biofilm growth of dermatophytes and explore possible mechanisms of anti-biofilm.
Materials And Methods: Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of isoflavaspidic acid PB against 25 isolates of dermatophytes were determined by the Clinical and Laboratory Standards Institute (CLSI) M38-A2 method. The effects of isoflavaspidic acid PB on dermatophytes biofilm formation and pre-formed biofilm were assessed by 2.3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[carbonyl (phenylamino)]-2H-tetrazolium hydroxide (XTT) assay. Morphology of mature biofilm were observed by Scanning Electron Microscope (SEM). Biomass, exopolysaccharide and ergosterol content of mature biofilm were analyzed by gravimetric analysis, anthranone sulfuric acid method and Ultra Performance Liquid Chromatography (UPLC) assay respectively.
Result: The MIC and MFC ranges of isoflavaspidic acid PB against 25 isolates of dermatophytes were 20-80 μg/mL and 40-80 μg/mL respectively. Isoflavaspidic acid PB (2 MIC) inhibited not only Trichophyton biofilm formation (54.8% ∼ 81.2%) but also the metabolic activity of mature biofilm (20.7% ∼ 44.2%). The result of SEM showed that isoflavaspidic acid PB (8 MIC) could destroy the morphology of hyphae seriously. Comparing with control group, biomass, exopolysaccharide and ergosterol content of the mature biofilm under isoflavaspidic acid PB (8 MIC) were significantly decreased (P < 0.01).
Conclusion: Isoflavaspidic acid PB had anti-fungal and fungicidal activities against dermatophytes. Isoflavaspidic acid PB could inhibit the biofilm of Trichophyton. The mechanism might be related to the decline of the biofilm biomass, exopolysaccharide and ergosterol content. These results showed that isoflavaspidic acid PB could be explored for promising anti-biofilm drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2019.111956 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!