Comparison of different label-free imaging high-throughput biosensing systems for aptamer binding measurements using thrombin aptamers.

Anal Biochem

Laboratory for Microarray Copying, Center for Biological Systems Analysis (ZBSA), University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany; Faculty for Biology, Biology 3, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany; Centre for Biological Signaling Studies (BIOSS), University of Freiburg, 79104, Freiburg, Germany; BioCopy GmbH, 79110 Freiburg, Germany. Electronic address:

Published: October 2019

AI Article Synopsis

  • High-throughput systems have been developed to analyze thousands of interactions simultaneously, utilizing established thrombin aptamer assays to compare three imaging systems and analysis software.
  • All analyzed systems were effective for measuring binding kinetics, but the kinetic constants and aptamer rankings varied significantly based on the system and user input.
  • The study emphasizes that binding constants are influenced by multiple factors such as surface chemistry and buffer composition, suggesting that researchers should use at least two different systems together for accurate results.

Article Abstract

To enable the analysis of several hundreds to thousands of interactions in parallel, high-throughput systems were developed. We used established thrombin aptamer assays to compare three such high-throughput imaging systems as well as analysis software and user influence. In addition to our own iRIf-system, we applied bscreen and IBIS-MX96. As non-imaging reference systems we used Octet-RED96, Biacore3000, and Monolith-NT.115. In this study we measured 1378 data points. Our results show that all systems are suitable for analyzing binding kinetics, but the kinetic constants as well as the ranking of the selected aptamers depend significantly on the applied system and user. We provide an insight into the signal generation principles, the systems and the results generated for thrombin aptamers. It should contribute to the awareness that binding constants cannot be determined as easily as other constants. Since many parameters like surface chemistry, biosensor type and buffer composition may change binding behavior, the experimenter should be aware that a system and assay dependent K is determined. Frequently, certain conditions that are best suited for a given biosensing system cannot be transferred to other systems. Therefore, we strongly recommend using at least two different systems in parallel to achieve meaningful results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2019.05.012DOI Listing

Publication Analysis

Top Keywords

systems
8
thrombin aptamers
8
comparison label-free
4
label-free imaging
4
imaging high-throughput
4
high-throughput biosensing
4
biosensing systems
4
systems aptamer
4
binding
4
aptamer binding
4

Similar Publications

On the causal connection in lifespan correlations and the possible existence of a 'number of life' at molecular level.

Sci Rep

December 2024

Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile.

Multiple physiological traits correlates with lifespan, being unclear both the causal connection among them and with the process of ageing. In this paper, we show that six traits (such as metabolic rate, mass, heart rate, etc) acting at the system level, are all related to lifespan thru the existence of an approximately constant number of respiration cycles in a lifespan ([Formula: see text]), therefore, we find that those relationships are not independently related to ageing. In addition, we study if the approximately constant [Formula: see text] is possibly linked with the end-of-lifespan somatic mutation burden, another number recently found to be approximately constant (Cagan, Nature 604:517-524, 2022).

View Article and Find Full Text PDF

Online vibration state identification of multi-rigid-body system based on self-healing model.

Sci Rep

December 2024

School of Mechanical Engineering, Liaoning Engineering Vocational College, Tieling, 112008, Liaoning, People's Republic of China.

The paper proposes a multi-rigid-body system state identification method based on self-healing model in order to improve the accuracy and reliability of CNC machine tools. Firstly, considering the influence of the joint surface, the Lagrange method is used to establish the mechanical model of the multi-rigid-body system. We input acceleration information and use the second-order modulation function to complete the online real-time identification of the joint surface parameters, thereby establishing the self-healing mechanical model of the multi-rigid-body system.

View Article and Find Full Text PDF

The study suggests a better multi-objective optimization method called 2-Archive Multi-Objective Cuckoo Search (MOCS2arc). It is then used to improve eight classical truss structures and six ZDT test functions. The optimization aims to minimize both mass and compliance simultaneously.

View Article and Find Full Text PDF

The intelligent identification of wear particles in ferrography is a critical bottleneck that hampers the development and widespread adoption of ferrography technology. To address challenges such as false detection, missed detection of small wear particles, difficulty in distinguishing overlapping and similar abrasions, and handling complex image backgrounds, this paper proposes an algorithm called TCBGY-Net for detecting wear particles in ferrography images. The proposed TCBGY-Net uses YOLOv5s as the backbone network, which is enhanced with several advanced modules to improve detection performance.

View Article and Find Full Text PDF

Desert locusts, notorious for their ruinous impact on agriculture, threaten over 20% of Earth's landmass, prompting billions in losses and global food scarcity concerns. With billions of these locusts invading agrarian lands, this is no longer a thing of the past. Recent invasions, such as those in India, where losses reached US$ 3 billion in 2019-20 alone, underscore the urgency of action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!