Dynamics of seagrass bed microbial communities in artificial Chattonella blooms: A laboratory microcosm study.

Harmful Algae

Plankton Laboratory, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho Hokkaido, Hakodate, 041-8611, Japan.

Published: April 2019

The influence of algicidal and growth-inhibiting bacteria in a seagrass (Zostera marina) bed, and their capability of controlling blooms of the fish-killing raphidophyte flagellate, Chattonella antiqua, were examined in laboratory microcosm experiments. Bacterial communities in seawater collected from the seagrass bed and Z. marina biofilm suppressed artificial Chattonella blooms in the presence of their natural competitors and predators. Phylogenetic analysis suggest that considerable numbers of bacteria that suppress Chattonella, including algicidal or growth-inhibiting bacteria isolated from seagrass biofilm and seawater from the seagrass bed, are members of Proteobacteria that can decompose lignocellulosic compounds. A direct comparison of partial 16S rRNA gene sequences (500 bp) revealed that the growth-limiting bacterium (strain ZM101) isolated from Z. marina biofilm belonged to the genus Phaeobacter (Alphaproteobacteria) showed 100% similarity with strains of growth-limiting bacteria isolated from seawater of both the seagrass bed and nearshore region, suggesting that the origin of these growth-limiting bacteria are the seagrass biofilm or seawater surrounding the seagrass bed. This study demonstrates that Chattonella growth-limiting bacteria living on seagrass biofilm and in the adjacent seawater can suppress Chattonella blooms, suggesting the possibility of Chattonella bloom prevention through restoration, protection, or introduction of seagrass in coastal areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hal.2018.12.004DOI Listing

Publication Analysis

Top Keywords

seagrass bed
20
chattonella blooms
12
seagrass biofilm
12
growth-limiting bacteria
12
seagrass
9
artificial chattonella
8
laboratory microcosm
8
algicidal growth-inhibiting
8
growth-inhibiting bacteria
8
bacteria seagrass
8

Similar Publications

Low-salinity conditions are generally used in land-based cultivation to promote the germination and growth of L. and to improve the restoration effect of seagrass beds. Different salinity conditions lead to morphological and physiological differences.

View Article and Find Full Text PDF

This research investigated the relationship between microplastic accumulation and the sediment texture in seagrass meadows across the selected coastal regions of Tuticorin. Sixteen sediment samples were collected by SCUBA divers utilizing a stainless steel grab sampler. Findings indicate significantly elevated microplastic concentrations in seagrass sediments when compared to unvegetated areas.

View Article and Find Full Text PDF

Scientometric approach to the scientific trends in articles on seagrass in the Atlantic Coast published between 1969-2024.

Front Plant Sci

December 2024

Laboratório de Ecologia de Sedimentos, Instituto de Biologia, Departamento de Biologia Marinha, Universidade Federal Fluminense, Niterói, Brazil.

Submerged or partially floating seagrasses in marine or brackish waters form productive seagrass beds, feeding grounds for a rich and varied associated biota, play key ecological roles in mitigating climate change and provide ecosystem services for humanity. The objective of this study was to perform a temporal quali- and quantitative analysis on the scientific production on seagrasses in the Atlantic Ocean during last 64 years (1960 to 2024) through defined workflow by scientometric analysis on Scopus database. Publications in this database date back to 1969, comprising a total of 3.

View Article and Find Full Text PDF

Unraveling the impact of PFOA toxicity on Zostera marina using a multi-omics approach: Insights from growth, physiological, transcriptomic, and metabolomic signatures.

J Hazard Mater

December 2024

Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, PR China; Joint Research Center for Conservation, Restoration & Sustainable Utilization of Marine Ecology, Ocean University of China-China State Shipbuilding Corporation Environmental Development Co., Ltd., Qingdao, PR China; Observation and Research Station of Yellow-Bohai Sea Temperate Seagrass Bed Ecosystem, Ministry of Natural Resources, Qingdao, PR China. Electronic address:

Perfluorooctanoic acid (PFOA), an anthropogenic organic pollutant known for its persistence, resistance to degradation, and toxicity, has raised significant concerns about its potential ecological impacts. Zostera marina, a common submerged seagrass species in temperate offshore areas, is highly vulnerable to pollutant stressors. However, the impact of PFOA on Z.

View Article and Find Full Text PDF

Enhancing seagrass restoration success: Detecting and quantifying mechanisms of wave-induced dislodgement.

Sci Total Environ

January 2025

Leibniz University Hannover, Ludwig Franzius Institute of Hydraulic, Estuarine and Coastal Engineering, Nienburger Str. 4, Hannover 30167, Germany.

Seagrass meadows are one of the most productive ecosystems of the world. Seagrass enhances biodiversity, sequesters CO and functions as a coastal protection measure by mitigating waves and enhancing sedimentation. However, populations are declining in many regions and natural recolonization of bare sediment beds is protracted and unlikely.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!