Design, cloning and characterization of transcription factor-based inducible gene expression systems.

Methods Enzymol

BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Centre for Biomolecular Sciences, School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom. Electronic address:

Published: February 2020

AI Article Synopsis

  • Cellular functions are regulated by small molecules like metabolites, with prokaryotic microorganisms using transcriptional regulators (TRs) to respond to changes in these metabolite levels.
  • A methodological pipeline is proposed for designing reporter constructs to study how gene expression systems respond to metabolites, which is crucial for synthetic biology applications.
  • The chapter details the creation and analysis of an itaconate-inducible system using a specific transcriptional regulator and promoter, with guidelines for fluorescence assays and data analysis.

Article Abstract

Cellular functions are often controlled by small molecular weight molecules such as metabolites. Microorganisms, mainly prokaryotes, have evolved sensing and regulatory mechanisms based on transcriptional regulators (TRs) that are able to activate gene expression in response to changes in intra- and extracellular metabolite (ligand) concentrations. To understanding control mechanisms and cell factory development in synthetic biology applications, high throughput analytical procedures are required. In this chapter, we outline a methodological pipeline to design and build reporter constructs enabling the characterization of metabolite-responsive inducible gene expression systems. As an example, we present the design, cloning and characterization of the itaconate-inducible system which is composed of the LysR-type transcriptional regulator ItcR and the promoter P from Yersinia pseudotuberculosis. Fluorescence-based plate reader and flow cytometry assays are described and the steps for performing data analysis are provided.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mie.2019.02.018DOI Listing

Publication Analysis

Top Keywords

gene expression
12
design cloning
8
cloning characterization
8
inducible gene
8
expression systems
8
characterization transcription
4
transcription factor-based
4
factor-based inducible
4
systems cellular
4
cellular functions
4

Similar Publications

Most diffuse large B-cell lymphoma (DLBCL) patients treated with immunotherapies such as bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was applied to multiple large independent datasets in order to characterize DLBCL immune environments, and to define their association with tumor cell-intrinsic genomic alterations and outcomes to CD19-directed CAR T-cell and CD20 x CD3 BsAb therapies. This approach effectively segregated DLBCLs into four immune quadrants (IQ) defined by cell-of-origin and immune-related gene set expression scores.

View Article and Find Full Text PDF

Optimal embryonic development depends upon cell-signaling molecules released by the maternal reproductive tract called embryokines. Identity of specific embryokines that enhance competence of the embryo for sustained survival is largely lacking. The current objective was to evaluate effects of three putative embryokines in cattle on embryonic development to the blastocyst stage.

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

Chronic stress-induced cholesterol metabolism abnormalities promote ESCC tumorigenesis and predict neoadjuvant therapy response.

Proc Natl Acad Sci U S A

February 2025

Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.

Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.

View Article and Find Full Text PDF

Strigolactones regulate Bambusa multiplex sheath senescence by promoting chlorophyll degradation.

Tree Physiol

January 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Lab of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

Culm sheaths are capable of photosynthesis and are an important class of non-leaf organs in bamboo plants. The source-sink interaction mechanism has been found to play an important role in the interaction between culm sheaths and internodes in Bambusa multiplex. Research on the regulatory mechanisms of culm sheath senescence is important for the study of internode growth, but reports in this regard are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!