The use of constructed wetlands in combination with microbial fuel cells (CW-MFC) to treat saline wastewater may enhance electricity production by increasing the ionic strength, reducing internal resistance and stimulating microbes to accelerate electron transfer. In this study, salinity did not significantly inhibit the removal of TP and COD, but TN and NH-N removal efficiencies during saline wastewater treatment (ST) were significantly lower than during non-saline wastewater treatment (NT). However, salinity significantly increased the power density (16.4 mW m in ST and 3.9 mW m in NT, a 4-fold enhancement) by increasing the electron transfer rate and reducing internal resistance (140.29 Ω in ST and 415.21 Ω in NT). The peptides in extracellular polymeric substances (EPS) acted as electron shuttles to promote the migration of electrons and protons in ST. From start-up to stable operation, though the microorganisms in ST were reduced in diversity relative to NT, the proportion of electrochemically active bacteria (EAB), such as Ochrobactrum, significantly increased (p < 0.05) and gradually predominated in the microbial community.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2019.121462 | DOI Listing |
J Environ Manage
January 2025
School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China. Electronic address:
The lack of cost-effective nutrient sources and harvesting methods is currently a major obstacle to the production of sustainable biofuels from microalgae. In this study, Chlorella pyrenoidosa was cultured with saline wastewater in a stirred photobioreactor, and lipid-rich flocculent microalgae particles were successfully constructed. As the influent salinity of the photobioreactor increased from 0% to 3%, the particle size and sedimentation rate of flocculent microalgae particles gradually increased, and the lipid accumulation of microalgae also increased gradually.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Institute for Water and Wastewater Technology, Durban University of Technology, Durban-4001, South Africa. Electronic address:
Recent advancements in data analytics, predictive modeling, and optimization have highlighted the potential of integrating algal blooms (ABs) with Industry 4.0 technologies. Among these innovations, digital twins (DT) have gained prominence, driven by the rapid development of artificial intelligence (AI) and machine learning (ML) technologies, particularly those associated with the Internet of Things (IoT).
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Danish Offshore Technology Centre (DTU), - Elektrovej 375, 2800 Kgs. Lyngby, Denmark.
The offshore oilfields in the North Sea area are increasingly employed for projects beyond oil production, like carbon capture and storage (CCS). Still, the fossil fuel production from mature fields is significant. It has raised environmental concerns associated with discharging produced waters (PW) and drilling mud into the sea.
View Article and Find Full Text PDFWater Res
December 2024
School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China. Electronic address:
Marine anammox bacteria-based Fe(II)-driven autotrophic denitratation and anammox (MFeADA) was investigated for nitrogen removal from saline wastewater for the first time. The study demonstrated that varying influent doses of Fe(II), which participate in the Fe cycle, significantly influenced nitrogen removal performance by altering the fate of nitrite. When 50 mg/L Fe(II) was added, the nitrogen removal was mainly performed by the anammox and Fe(II)-driven autotrophic denitratation (FeAD).
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China. Electronic address:
Recently, hybrid capacitive deionization (HCDI) has garnered significant attention for its potential in the selective extraction of cesium (Cs) from radioactive wastewater and salt lakes, which is crucial for resolving the supply-demand imbalance of cesium resources and eliminating radioactive contamination. However, developing HCDI electrodes capable of effectively separating and extracting Cs remains a significant challenge. In this work, we proposed an innovative strategy involving the doping of inactive metal ions to develop zinc-doped manganese hexacyanoferrate (ZMFC) as an HCDI cathode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!