Parkinson's Disease (PD) and Multiple System Atrophy (MSA) are two parkinsonian syndromes that share many symptoms, albeit having very different prognosis. Although previous studies have proposed multimodal MRI protocols combined with multivariate analysis to discriminate between these two populations and healthy controls, studies combining all MRI indexes relevant for these disorders (i.e. grey matter volume, fractional anisotropy, mean diffusivity, iron deposition, brain activity at rest and brain connectivity) with a completely data-driven voxelwise analysis for discrimination are still lacking. In this study, we used such a complete MRI protocol and adapted a fully-data driven analysis pipeline to discriminate between these populations and a healthy controls (HC) group. The pipeline combined several feature selection and reduction steps to obtain interpretable models with a low number of discriminant features that can shed light onto the brain pathology of PD and MSA. Using this pipeline, we could discriminate between PD and HC (best accuracy = 0.78), MSA and HC (best accuracy = 0.94) and PD and MSA (best accuracy = 0.88). Moreover, we showed that indexes derived from resting-state fMRI alone could discriminate between PD and HC, while mean diffusivity in the cerebellum and the putamen alone could discriminate between MSA and HC. On the other hand, a more diverse set of indexes derived by multiple modalities was needed to discriminate between the two disorders. We showed that our pipeline was able to discriminate between distinct pathological populations while delivering sparse model that could be used to better understand the neural underpinning of the pathologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6531871 | PMC |
http://dx.doi.org/10.1016/j.nicl.2019.101858 | DOI Listing |
Sci Rep
January 2025
Cognitive Neuroanatomy Lab, INCC UMR 8002, CNRS, Université Paris Cité, Paris, France.
Functional connectivity holds promise as a biomarker of schizophrenia. Yet, the high dimensionality of predictive models trained on functional connectomes, combined with small sample sizes in clinical research, increases the risk of overfitting. Recently, low-dimensional representations of the connectome such as macroscale cortical gradients and gradient dispersion have been proposed, with studies noting consistent gradient and dispersion differences in psychiatric conditions.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biomedical Engineering, Duke University, Durham, NC, USA.
Designing binders to target undruggable proteins presents a formidable challenge in drug discovery. In this work, we provide an algorithmic framework to design short, target-binding linear peptides, requiring only the amino acid sequence of the target protein. To do this, we propose a process to generate naturalistic peptide candidates through Gaussian perturbation of the peptidic latent space of the ESM-2 protein language model and subsequently screen these novel sequences for target-selective interaction activity via a contrastive language-image pretraining (CLIP)-based contrastive learning architecture.
View Article and Find Full Text PDFJHEP Rep
February 2025
Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany.
Background & Aims: Biliary abnormalities in autoimmune hepatitis (AIH) and interface hepatitis in primary biliary cholangitis (PBC) occur frequently, and misinterpretation may lead to therapeutic mistakes with a negative impact on patients. This study investigates the use of a deep learning (DL)-based pipeline for the diagnosis of AIH and PBC to aid differential diagnosis.
Methods: We conducted a multicenter study across six European referral centers, and built a library of digitized liver biopsy slides dating from 1997 to 2023.
Acad Radiol
January 2025
Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang Province, China (Y.R., W.L., Y.Z., S.K., F.C.). Electronic address:
Rationale And Objectives: Non-invasive assessment of renal fibrosis in patients with chronic kidney disease (CKD) remains a clinical challenge. This study aims to integrate radiomics and clinical factors to develop an end-to-end pipeline for predicting interstitial fibrosis (IF) in CKD patients.
Materials And Methods: This retrospective study included 80 patients with CKD, with 53 patients in training set and 27 patients in test set.
Int J Comput Assist Radiol Surg
January 2025
Computer Vision and Image Processing Lab., UofL, Louisville, KY, 40292, USA.
Purpose: This article introduces a novel deep learning approach to substantially improve the accuracy of colon segmentation even with limited data annotation, which enhances the overall effectiveness of the CT colonography pipeline in clinical settings.
Methods: The proposed approach integrates 3D contextual information via guided sequential episodic training in which a query CT slice is segmented by exploiting its previous labeled CT slice (i.e.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!