Coordination polymers of Tb/Nucleotide as smart chemical nose/tongue toward pattern-recognition-based and time-resolved fluorescence sensing.

Biosens Bioelectron

School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China. Electronic address:

Published: August 2019

The abundant functional groups on guanosine monophosphate (GMP) make it possible to interact with various metal ions. The subtle difference in the structure of GMP and deoxy-guanosine monophosphate (dGMP) coupled with Tb3+ can be readily exploited to form two coordination polymers, which have been unveiled as two time-resolved fluorescence (TRF) sensing reporters (Tb-GMP and Tb-dGMP) in our study. Based on this finding, herein, we have proposed a novel TRF orthogonal sensing array (Tb-GMP/dGMP) for pattern-recognition-based sensing of various metal ions. In addition, upon integration of some thiol-affinity metal ions, Tb-GMP/dGMP can be further extended to construct two metal ion-involved pattern-recognition-based sensor arrays (Tb-GMP/dGMP-Cu, Tb-GMP/dGMP-Ag) for the TRF sensing different levels of disease-relevant biothiols in biofluids, illustrating the powerful and multifunctional capabilities of the Tb-GMP/dGMP system and would inspire simpler and more widespread designs of chemical nose/tongue-based applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2019.111335DOI Listing

Publication Analysis

Top Keywords

metal ions
12
coordination polymers
8
time-resolved fluorescence
8
trf sensing
8
sensing
5
polymers tb/nucleotide
4
tb/nucleotide smart
4
smart chemical
4
chemical nose/tongue
4
nose/tongue pattern-recognition-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!