Optimization of phosphate recovery from urine by layered double hydroxides.

Sci Total Environ

Division of Soil and Water Management, Department of Earth and Environmental Science, KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium.. Electronic address:

Published: September 2019

Urine contains sufficient phosphorus (P) to consider P recycling form urine as an interesting strategy. In this study, the potential of MgAl or ZnAl layered double hydroxides (LDHs) to be used in such recovery was assessed. LDHs are anion exchangers with a high P selectivity, and P-loaded LDHs have demonstrated fertiliser potential. A critical factor for efficient P recycling with LDH is the stability of these materials, which can be compromised by urinary citrate, complexing aluminium (Al) and by the low pH of fresh urine dissolving the alkaline LDHs. Different phase pure ZnAl and MgAl LDHs were synthesised by coprecipitation in scenarios of varying synthesis pH and Mg/Al or Zn/Al ratios. The obtained materials were incubated in P solutions at different pH, with or without citrate in full factorial combinations, and in fresh and stored human urine. The P sorption capacities increased for LDHs synthesised at lower pH, at increasing Al content and for sorption solutions with lower pH. These trends are explained by an increased anion exchange capacity (AEC) and by P speciation (charge) in the LDHs, an interpretation supported by XRD measurements. The P capacity reached 61mg P/g LDH, which equals 85% of the theoretical LDH exchange capacity. Only 1g LDH is required to remove 90% of P from 1L urine and evidence is found that sorption, not struvite precipitation, is the P removal mechanism involved. The ZnAl LDHs were equally effective in P uptake compared to the MgAl LDHs, but the ZnAl materials showed more irreversible P sorption in contrast with the high desorption yields (53mg P/g) of the MgAl LDHs. Therefore, the large potential of MgAl LDHs for P recovery from urine is supported by this study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.05.181DOI Listing

Publication Analysis

Top Keywords

mgal ldhs
16
ldhs
11
recovery urine
8
layered double
8
double hydroxides
8
potential mgal
8
ldhs recovery
8
ldhs synthesised
8
exchange capacity
8
urine
7

Similar Publications

Efficient adsorption behavior of Fe-based ternary magnetic LDHs for naphthalene acetic acid: Role of Fe element.

Environ Res

January 2025

School of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. Electronic address:

Naphthalene acetic acid (NAA) is an auxin plant growth regulator (PGR) and widely used to regulate the growth process of plants. As excessive NAA enter the environment, it damages the ecological environment and endangers human life and health. Layered bimetallic hydroxides (LDHs) are widely used for the adsorption of pollutants due to their large surface area and excellent structural properties.

View Article and Find Full Text PDF
Article Synopsis
  • A magnesium-aluminum layered double hydroxide (LDH) was created using a coprecipitation technique from a nitrate solution and transformed into a layered double oxide (LDO) after being heated to 450 °C.
  • During rehydration in a fluoride solution, the LDH's original structure was restored and fluoride ions were absorbed to maintain balance, a finding confirmed by energy-dispersive X-ray spectroscopy (EDS).
  • The study demonstrated that using ethanol during the rehydration process significantly increased fluoride incorporation, and the fluoride release pattern from the material revealed a rapid initial release followed by a slower, prolonged release.
View Article and Find Full Text PDF

In this work, the coprecipitation approach was successfully used to create Mg-Al hydrotalcite-like inhibitors modified with varying amounts of Zn, and their characteristics were assessed. The findings indicate that the flame retardancy of Mg-Al hydrotalcite (MgAl-LDHs) is not significantly affected by Zn content. By adding MgAl-LDHs, the temperature at which the exothermic reaction started to occur was raised from 146.

View Article and Find Full Text PDF

The delivery of active functional molecules across the skin is laborious due to its structural intricacy and exceptional barrier characteristics. Developments in nanotechnology yielded innovative transport vehicles derived from nanomaterials to reinforce the skin's ability to interact with active ingredient molecules and increase its bioavailability. The current study employed crystalline inorganic two-dimensional double hydroxides (LDHs) as an efficient carrier and delivery vehicle for folic acid (FA) in a topical skincare formulation.

View Article and Find Full Text PDF

Synergistic effect of W(VI) and Ni(II) uptakes on an MgAl-layered double hydroxide.

Environ Res

December 2024

Jiangxi Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Ganzhou, 341000, PR China; School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China. Electronic address:

The coadsorption of anionic and cationic pollutants on adsorbents holds considerable importance in the development of relevant removal technologies and the understanding of pollutant transport in complex environmental media. Herein, tungsten (W), an emerging contaminant, and nickel (Ni) were chosen as two differently charged inorganic pollutants to investigate their removal characteristics on a magnesium-aluminum layered double hydroxide (LDH) prepared via microwave radiation. In the single systems, the amount of adsorbed W on LDH was initially increased and then decreased with increasing initial W concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!