A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Switching the substrate specificity from NADH to NADPH by a single mutation of NADH oxidase from Lactobacillus rhamnosus. | LitMetric

Switching the substrate specificity from NADH to NADPH by a single mutation of NADH oxidase from Lactobacillus rhamnosus.

Int J Biol Macromol

School of Pharmacy, United Pharmaceutical Institute of Jiangsu University and Shandong Tianzhilvye Biotechnology Co. Ltd., Jiangsu University, Zhenjiang 212013, People's Republic of China; College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, People's Republic of China. Electronic address:

Published: August 2019

Enzymatic NADP regeneration is a promising approach to produce valuable chemicals under economic conditions. Among all the enzymatic routes, using water-forming NADH oxidase is an ideal one because there is no by-product. However, most NADH oxidases have a low specific activity to NADPH. In this work, a thermostable NADH oxidase from Lactobacillus rhamnosus (LrNox) was rationally engineered to switch its specificity from NADH to NADPH. The results show that mutants D177A, G178R, D177A/G178R, D177A/G178R/L179S improved the NADPH activity by a factor of 4-6. The highest NADPH catalytic efficiency (K/K 223.71 S μm, 47.6-fold higher than wild-type LrNox) and 51% of NADH activity retention were achieved by replacing the single amino acid Leu179 for serine (L179S) in LrNox. Modeling of L179S-NADPH complex reveals that the phosphate group of NADPH interacts with the hydroxyl of Ser179 with a strong hydrogen bond and several shorter hydrogen bonds with the amino group of Lys185 could stabilize the binding of NADPH in the L179S mutant. This work provides an efficient method for converting NAD(P)H specificity and shows that L179S mutant is a potential and efficient auxiliary enzyme for NADP regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.05.146DOI Listing

Publication Analysis

Top Keywords

nadh oxidase
12
specificity nadh
8
nadph
8
nadh nadph
8
oxidase lactobacillus
8
lactobacillus rhamnosus
8
nadp regeneration
8
l179s mutant
8
nadh
7
switching substrate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!