Activation of cannabinoid type 2 receptor protects skeletal muscle from ischemia-reperfusion injury partly via Nrf2 signaling.

Life Sci

Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China; Remote Forensic Consultation Center, Collaborative Innovation Center of Judicial Civilization, China University of Political Science and Law, Beijing 100192, China; Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang 110032, China. Electronic address:

Published: August 2019

Aims: Cannabinoid type 2 (CB) receptor activation has been shown to attenuate IRI in various organs. NF-E2-related factor (Nrf2) is an anti-oxidative factor that plays multiple roles in regulating cellular redox homeostasis and modulating cell proliferation and differentiation. The protective effects of CB receptor activation on skeletal muscle IRI and the underlying mechanism that involves Nrf2 signaling remain unknown.

Main Methods: We evaluated the in vivo effect of CB receptor activation by the CB receptor agonist AM1241 on IR-induced skeletal muscle damage and early myogenesis. We also assessed the effects of CB receptor activation on C2C12 myoblasts differentiation and HO-induced C2C12 myoblasts damage in vitro, with a focus on the mechanism of Nrf2 signaling.

Key Findings: Our results showed that CB receptor activation reduced IR-induced histopathological lesions, edema, and oxidative stress 1 day post-injury and accelerated early myogenesis 4 days post-injury in mice. Nrf2 knockout mice that were treated with AM1241 exhibited deteriorative skeletal muscle oxidative damage and myogenesis. In vitro, pretreatment with AM1241 significantly increased the expression of Nrf2 and its nuclear translocation, attenuated the decrease in HO-induced C2C12 cell viability, and decreased reactive oxygen species generation and apoptosis. CB receptor activation also significantly enhanced C2C12 myoblasts differentiation, which was impaired by silencing Nrf2.

Significance: Overall, CB receptor activation protected skeletal muscle against IRI by ameliorating oxidative damage and promoting early skeletal muscle myogenesis, which was partly via Nrf2 signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2019.05.056DOI Listing

Publication Analysis

Top Keywords

receptor activation
28
skeletal muscle
24
nrf2 signaling
12
c2c12 myoblasts
12
receptor
9
activation
8
cannabinoid type
8
type receptor
8
partly nrf2
8
effects receptor
8

Similar Publications

Insulin resistance, a hallmark of type 2 diabetes, accelerates muscle breakdown and impairs energy metabolism. However, the role of Ubiquitin Specific Peptidase 2 (USP2), a key regulator of insulin resistance, in sarcopenia remains unclear. Peroxisome proliferator activated receptor γ (PPARγ) plays a critical role in regulating muscle atrophy.

View Article and Find Full Text PDF

Antigen receptor ITAMs provide tonic signaling by acting as guanine nucleotide exchange factors to directly activate R-RAS2.

Sci Signal

January 2025

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

The small GTPase R-RAS2 regulates homeostatic proliferation and survival of T and B lymphocytes and, when present in high amounts, drives the development of B cell chronic lymphocytic leukemia. In normal and leukemic lymphocytes, R-RAS2 constitutively binds to antigen receptors through their immunoreceptor tyrosine-based activation motifs (ITAMs) and promotes tonic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Here, we examined the molecular mechanisms underlying this direct interaction and its consequences for R-RAS2 activity.

View Article and Find Full Text PDF

Toll-like receptor (TLRs) activation in multiple myeloma (MM) cells induces heterogeneous functional responses including cell growth and proliferation, survival or apoptosis. These effects have been suggested to be partly due to increase in secretion of cytokines such as IL-6 or IFNα among others from MM cells following TLR activation. However, whether triggering of these receptors also modulates production of immunoglobulin free light chains (FLCs), which largely contribute to MM pathology, has not been investigated in MM cells before.

View Article and Find Full Text PDF

Classical tissue recombination experiments demonstrate that cell-fate determination along the anterior-posterior axis of the Müllerian duct occurs prior to postnatal day 7 in mice. However, little is known about how these cell types are maintained in adults. In this study, we provide genetic evidence that a balance between antagonistic retinoic acid (RA) and estrogen signaling activity is required to maintain simple columnar cell fate in adult uterine epithelium.

View Article and Find Full Text PDF

In the presence of stressful environments, the SKN-1 cytoprotective transcription factor is activated to induce the expression of gene targets that can restore homeostasis. However, chronic activation of SKN-1 results in diminished health and a reduction of lifespan. Here we demonstrate the necessity of modulating SKN-1 activity to maintain the longevity-promoting effects associated with genetic mutations that impair daf-2/insulin receptor signaling, the eat-2 model of dietary restriction, and glp-1-dependent loss of germ cell proliferation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!