Lineage tracing of sclerotome cells in amphibian reveals that multipotent somitic cells originate from lateral somitic frontier.

Dev Biol

UMR INSERM 1124, Université de Paris, Faculté des sciences biomédicales et fondamentales, 45 rue des Saints-Pères, F-75270, Paris Cedex 06, France. Electronic address:

Published: September 2019

The two somite compartments, dorso-lateral dermomyotome and medio-ventral sclerotome are major vertebrate novelties, but little is known about their evolutionary origin. We determined that sclerotome cells in Xenopus come from lateral somitic frontier (LSF) by lineage tracing, ablation experiments and histological analysis. We identified Twist1 as marker of migrating sclerotome progenitors in two amphibians, Xenopus and axolotl. From these results, three conclusions can be drawn. First, LSF is made up of multipotent somitic cells (MSCs) since LSF gives rise to sclerotome but also to dermomytome as already shown in Xenopus. Second, the basic scheme of somite compartmentalization is conserved from cephalochordates to anamniotes since in both cases, lateral cells envelop dorsally and ventrally the ancestral myotome, suggesting that lateral MSCs should already exist in cephalochordates. Third, the transition from anamniote to amniote vertebrates is characterized by extension of the MSCs domain to the entire somite at the expense of ancestral myotome since amniote somite is a naive tissue that subdivides into sclerotome and dermomyotome. Like neural crest pluripotent cells, MSCs are at the origin of major vertebrate novelties, namely hypaxial region of the somite, dermomyotome and sclerotome compartments. Hence, change in MSCs properties and location is involved in somite evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2019.05.009DOI Listing

Publication Analysis

Top Keywords

lineage tracing
8
sclerotome cells
8
multipotent somitic
8
somitic cells
8
lateral somitic
8
somitic frontier
8
major vertebrate
8
vertebrate novelties
8
cells mscs
8
ancestral myotome
8

Similar Publications

The growing issue of drug resistance, particularly multidrug-resistant TB (MDR-TB), has exacerbated this problem. The rise of drug resistance TB is a severe global health concern. In Thailand, a persistent community outbreak of primary MDR-TB has been confirmed in the Tha Maka district of Kanchanaburi province, with an increasing prevalence of MDR-TB among newly diagnosed pulmonary tuberculosis cases.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) increases the mortality of preterm infants with bronchopulmonary dysplasia (BPD). There are no curative therapies for this disease. Lung endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine shuttle system, is reduced in a rodent model of BPD.

View Article and Find Full Text PDF

Unlabelled: Archaeal molecular biology has been a topic of intense research in recent decades as their role in global ecosystems, nutrient cycles, and eukaryotic evolution comes to light. The hypersaline-adapted archaeal species and serve as important model organisms for understanding archaeal genomics, genetics, and biochemistry, in part because efficient tools enable genetic manipulation. As a result, the number of strains in circulation among the haloarchaeal research community has increased in recent decades.

View Article and Find Full Text PDF

The origin of domestic sheep (Ovis aries) can be traced back to the Asian mouflon (Ovis gmelini), in the Near East around 10 000 years ago. Genetic divergence within mouflon populations can occur due to factors such as geographical isolation, social structures, and environmental pressures, leading to different affinities with domestic sheep. However, few studies have reported the extent to which mouflon sheep contribute to domestic sheep in different regions.

View Article and Find Full Text PDF

The oral mucosa undergoes daily insults, and stem cells in the epithelial basal cell layer regenerate gingiva tissue to maintain oral health. The Iroquois Homeobox 1 (IRX1) protein is expressed in the stem cell niches in human/mouse oral epithelium and mesenchyme under homeostasis. We found that Irx1+/- heterozygous (Het) mice have delayed wound closure, delayed morphological changes of regenerated epithelium, and defective keratinocyte proliferation and differentiation during wound healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!