In Vitro Assays for DNA Branch Migration.

Methods Mol Biol

Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA.

Published: March 2020

Homologous recombination is a high-fidelity DNA double-strand break repair pathway that uses a homologous template to repair the break. Recombinases are the central enzymes that facilitate the strand invasion step of homologous recombination, which forms a DNA joint molecule. These DNA joint molecules can be moved through branch migration activity. In this chapter, we describe two assays to determine the branch migration activity and directionality of an enzyme. Monitoring the branch migration activity of an enzyme can provide insight into the roles of these factors in homologous recombination.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9500-4_18DOI Listing

Publication Analysis

Top Keywords

branch migration
16
homologous recombination
12
migration activity
12
dna joint
8
vitro assays
4
dna
4
assays dna
4
branch
4
dna branch
4
migration
4

Similar Publications

The frequency of mitochondrial DNA haplogroups (mtDNA-HG) in humans is known to be shaped by migration and repopulation. Mounting evidence indicates that mtDNA-HG are not phenotypically neutral, and selection may contribute to its distribution. Haplogroup H, the most abundant in Europe, improved survival in sepsis.

View Article and Find Full Text PDF

Sponges are key ecosystem engineers that shape, structure and enhance the biodiversity of marine benthic communities globally. Sponge aggregations and reefs are recognized as vulnerable marine ecosystems (or VMEs) due to their susceptibility to damage from bottom-contact fishing gears. Ensuring their long-term sustainability, preservation, and ecosystem functions requires the implementation of sound scientific conservation tools.

View Article and Find Full Text PDF

Background: Long non-coding RNAs (lncRNAs) are major research factors in a variety of diseases, and lncRNA OIP5-AS1 (OIP5-AS1) was shown to mediate the progression of various tumors. This paper discusses how OIP5-AS1 could potentially be used for diagnosing and prognosticating cholangiocarcinoma (CHOL).

Methods: The ENROCI project evaluated the OIP5-AS1 expression in CHOL samples and confirmed it using RT-qPCR.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) is characterized by the accumulation of beta-amyloid plaques and tau protein tangles and neurodegeneration, with growing interest in the role of neuroinflammation. The neuroinflammatory response to an insult is modulated by microglia, which transition from a resting state marked by ramified, branching processes to an activated stated in which they proliferate, migrate, and swell (processes shorten, somas enlarge). Animal studies have shown that diffusion-weighted magnetic resonance imaging (MRI) is sensitive to these morphological differences in microglia, with higher diffusion in brain regions experiencing inflammation.

View Article and Find Full Text PDF

Previous studies revealed that tumor-associated macrophages/microglia (TAMs) promoted glioma invasiveness during tumor progression and after radiotherapy. However, the communication of TAMs with tumor cells remains unclear. This study aimed to examine the role of small extracellular vesicles (sEVs) derived from TAMs in TAMs-mediated brain tumor invasion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!