https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=31127578&retmode=xml&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=complementation+assay&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_679579a8ba488ce2ae005fd2&query_key=1&retmode=xml&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908 A Mammalian Genetic Complementation Assay for Assessing Cellular Resistance to Genotoxic Compounds. | LitMetric

A Mammalian Genetic Complementation Assay for Assessing Cellular Resistance to Genotoxic Compounds.

Methods Mol Biol

Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.

Published: March 2020

A complementation assay was developed to determine whether alleles of DNA repair genes are necessary for repairing specific types of damage. The assay was established by measuring the resistance capacity of Rad51d-deficient mouse embryonic fibroblasts (MEFs) transfected with mammalian expression constructs. Here, we describe the methods used to assess colony survival following the treatment of transfected cells with genotoxic compounds. This approach provides a time-efficient and stringent strategy to screen genetic alleles for identifying regions or specific amino acid residues critical for function or regulation of DNA repair pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9500-4_12DOI Listing

Publication Analysis

Top Keywords

complementation assay
8
genotoxic compounds
8
dna repair
8
mammalian genetic
4
genetic complementation
4
assay assessing
4
assessing cellular
4
cellular resistance
4
resistance genotoxic
4
compounds complementation
4

Similar Publications

A Series of Novel Alleles of Modulating Heading and Salt Tolerance in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China.

Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.

View Article and Find Full Text PDF

Potassium, an essential inorganic cation, is crucial for the growth of oil crops like L. Given the scarcity of potassium in soil, enhancing rapeseed's potassium utilization efficiency is of significant importance. This study identified 376 potassium utilization genes in the genome of ZS11 through homologous retrieval, encompassing 7 functional and 12 regulatory gene families.

View Article and Find Full Text PDF

The Passage of Chaperonins to Extracellular Locations in Requires a Functional Dot/Icm System.

Biomolecules

January 2025

Department of Microbiology-Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.

HtpB, the chaperonin of the bacterial pathogen , is found in extracellular locations, even the cytoplasm of host cells. Although chaperonins have an essential cytoplasmic function in protein folding, HtpB exits the cytoplasm to perform extracellular virulence-related functions that support 's lifestyle. The mechanism by which HtpB reaches extracellular locations is not currently understood.

View Article and Find Full Text PDF

Lung seven transmembrane receptors are involved in Arabidopsis root growth mediated by Danger-associated peptide Pep1.

Biochem Biophys Res Commun

January 2025

State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, 210093, Nanjing, China.

Lung seven transmembrane receptor family is a small part of Arabidopsis gene family. So far, the function of some members of the this family is unknown. Plant elicitor peptide1 (Pep1) is one of damage-associated molecular patterns (DAMPs), which could trigger root growth inhibition and plant immunity responses.

View Article and Find Full Text PDF

SmbHLH93can activate the expression of SmCHS, SmANS, SmDFR and SmF3H.Overexpression of SmbHLH93promotes anthocyanin biosynthesis. SmbHLH93can interact with SmMYB1 to promote anthocyanin accumulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!