Alkali metal vapors enable access to single electron systems, suitable for demonstrating fundamental light-matter interactions and promising for quantum logic operations, storage and sensing. However, progress is hampered by the need for robust and repeatable control over the atomic vapor density and over the associated optical depth. Until now, a moderate improvement of the optical depth was attainable through bulk heating or laser desorption - both time-consuming techniques. Here, we use plasmonic nanoparticles to convert light into localized thermal energy and to achieve optical depths in warm vapors, corresponding to a ~16 times increase in vapor pressure in less than 20 ms, with possible reload times much shorter than an hour. Our results enable robust and compact light-matter devices, such as efficient quantum memories and photon-photon logic gates, in which strong optical nonlinearities are crucial.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6534619PMC
http://dx.doi.org/10.1038/s41467-019-10158-4DOI Listing

Publication Analysis

Top Keywords

vapor pressure
8
optical depth
8
optical
5
atomic dispensers
4
dispensers thermoplasmonic
4
thermoplasmonic control
4
control alkali
4
alkali vapor
4
pressure quantum
4
quantum optical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!