The BBSome, a complex of eight Bardet-Biedl syndrome (BBS) proteins involved in cilia function, has emerged as an important regulator of energy balance, but the underlying cellular and molecular mechanisms are not fully understood. Here, we show that the control of energy homeostasis by the anorexigenic proopiomelanocortin (POMC) neurons and orexigenic agouti-related peptide (AgRP) neurons require intact BBSome. Targeted disruption of the BBSome by gene deletion in POMC or AgRP neurons increases body weight and adiposity. We demonstrate that obesity in mice lacking the gene in POMC neurons is associated with hyperphagia. Mechanistically, we present evidence implicating the BBSome in the trafficking of G protein-coupled neuropeptide Y Y2 receptor (NPYR) and serotonin 5-hydroxytryptamine (HT) receptor (5-HTR) to cilia and plasma membrane, respectively. Consistent with this, loss of the BBSome reduced cell surface expression of the 5-HTR, interfered with serotonin-evoked increase in intracellular calcium and membrane potential, and blunted the anorectic and weight-reducing responses evoked by the 5-HTR agonist, lorcaserin. Finally, we show that disruption of the BBSome causes the 5-HTR to be stalled in the late endosome. Our results demonstrate the significance of the hypothalamic BBSome for the control of energy balance through regulation of trafficking of important metabolic receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692817PMC
http://dx.doi.org/10.2337/db18-1088DOI Listing

Publication Analysis

Top Keywords

agrp neurons
12
bbsome
8
pomc agrp
8
body weight
8
metabolic receptors
8
energy balance
8
control energy
8
pomc neurons
8
disruption bbsome
8
neurons
5

Similar Publications

Hypoxia inducible factor-dependent upregulation of Agrp in glomus type I cells of the carotid body.

Mol Metab

January 2025

Center for Hypothalamic Research and Department of Internal medicine, UT Southwestern Medical Center, Dallas, TX, USA. Electronic address:

Agouti-related peptide (AgRP) is a well-established potent orexigenic peptide primarily expressed in hypothalamic neurons. Nevertheless, the expression and functional significance of extrahypothalamic AgRP remain poorly understood. In this study, utilizing histological and molecular biology techniques, we have identified a significant expression of Agrp mRNA and AgRP peptide production in glomus type I cells within the mouse carotid body (CB).

View Article and Find Full Text PDF

Acute and circadian feedforward regulation of agouti-related peptide hunger neurons.

Cell Metab

December 2024

Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA. Electronic address:

When food is freely available, eating occurs without energy deficit. While agouti-related peptide (AgRP) neurons are likely involved, their activation is thought to require negative energy balance. To investigate this, we implemented long-term, continuous in vivo fiber-photometry recordings in mice.

View Article and Find Full Text PDF

Caloric depletion leads to behavioral changes that help an animal find food and restore its homeostatic balance. Hunger increases exploration and risk-taking behavior, allowing an animal to forage for food despite risks; however, the neural circuitry underlying this change is unknown. Here, we characterize how hunger restructures an animal's spontaneous behavior as well as its directed exploration of a novel object.

View Article and Find Full Text PDF

Chronic sleep deprivation disturbs energy balance modulated by suprachiasmatic nucleus efferents in mice.

BMC Biol

December 2024

Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.

Background: Epidemiologic researches show that short sleep duration may affect feeding behaviors resulting in higher energy intake and increased risk of obesity, but the further mechanisms that can interpret the causality remain unclear. The circadian rhythm is fine-tuned by the suprachiasmatic nucleus (SCN) as the master clock, which is essential for driving rhythms in food intake and energy metabolism through neuronal projections to the arcuate nucleus (ARC) and paraventricular nucleus (PVN).

Results: We showed that chronic SD-induced aberrant expressions of AgRP/NPY and POMC attributed to compromised JAK/STAT3 signals and reduced energy expenditure in the mice, which can be rescued with AAV-genetic overexpression of BMAL1 into SCN.

View Article and Find Full Text PDF

Neuronal Regulation of Feeding and Energy Metabolism: A Focus on the Hypothalamus and Brainstem.

Neurosci Bull

December 2024

Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Key Laboratory of Immune Response and Immunotherapy, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.

In the face of constantly changing environments, the central nervous system (CNS) rapidly and accurately calculates the body's needs, regulates feeding behavior, and maintains energy homeostasis. The arcuate nucleus of the hypothalamus (ARC) plays a key role in this process, serving as a critical brain region for detecting nutrition-related hormones and regulating appetite and energy homeostasis. Agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons in the ARC are core elements that interact with other brain regions through a complex appetite-regulating network to comprehensively control energy homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!