Given the ecological significance of microorganisms in algal blooming events, it is critical to understand the mechanisms regarding their distribution under different conditions. We tested the hypothesis that microbial community succession is strongly associated with algal bloom stages, and that the assembly mechanisms are cocontrolled by deterministic and stochastic processes. Community structures and underlying ecological processes of microbial populations (attached and free-living bacteria) at three algal bloom stages (pre-, during, and postbloom) over a complete dinoflagellate bloom were investigated. Both attached and free-living taxa had a strong response to the bloom event, and the latter was more sensitive than the former. The contribution of environmental parameters to microbial variability was 40.2%. Interaction analysis showed that complex positive or negative correlation networks exist in phycosphere microbes. These relationships were the potential drivers of mutualist and competitive interactions that impacted bacterial succession. Null model analysis showed that the attached bacterial community primarily exhibited deterministic processes at pre- and during-bloom stages, while dispersal-related processes contributed to a greater extent at the postbloom stage. In the free-living bacterial community, homogeneous selection and dispersal limitation dominated in the initial phase, which gave way to more deterministic processes at the two later stages. Relative contribution analyses further demonstrated that the community turnover of attached bacteria was mainly driven by environmental selection, while stochastic factors had partial effects on the assembly of free-living bacteria. Taken together, these data demonstrated that a robust link exists between bacterioplankton community structure and bloom progression, and phycosphere microbial succession trajectories are cogoverned by both deterministic and random processes. Disentangling the mechanisms shaping bacterioplankton communities during a marine ecological event is a core concern for ecologists. Harmful algal bloom (HAB) is a typical ecological disaster, and its formation is significantly influenced by alga-bacterium interactions. Microbial community shifts during the HAB process are relatively well known. However, the assembly processes of microbial communities in an HAB are not fully understood, especially the relative influences of deterministic and stochastic processes. We therefore analyzed the relative contributions of deterministic and stochastic processes during an HAB event. Both free-living and attached bacterial groups had a dramatic response to the HAB, and the relative importance of determinism versus stochasticity varied between the two bacterial groups at various bloom stages. Environmental factors and biotic interactions were the main drivers impacting the microbial shift process. Our results strengthen the understanding of the ecological mechanisms controlling microbial community patterns during the HAB process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643250 | PMC |
http://dx.doi.org/10.1128/AEM.00349-19 | DOI Listing |
J Proteome Res
January 2025
Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
As part of the intestinal microbiota, can elicit a humoral response in the gastrointestinal tract (GIT) that is mainly directed toward hyphal antigens. This response has been implicated in controlling the invasive form of the fungus and maintaining the yeast as an innocuous commensal. However, the specific targets of this response are still unknown.
View Article and Find Full Text PDFMicrob Genom
January 2025
GMT Science 75 route de Lyons-La-Foret, Rouen F-76000, France.
Microbiome profiling tools rely on reference catalogues, which significantly affect their performance. Comparing them is, however, challenging, mainly due to differences in their native catalogues. In this study, we present a novel standardized benchmarking framework that makes such comparisons more accurate.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Department of Animal Science, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
The intestinal microbiota is widely recognized as an integral factor in host health, metabolism, and immunity. In this study, the impact of dietary fiber sources on the intestinal microbiota and the production of short-chain fatty acids (SCFAs) was evaluated in Lohmann White laying hens. The hens were divided into four treatment groups: a control diet without fiber, a diet with wheat bran (mixed fibers), a diet with insoluble fiber (cellulose), and a diet with soluble fiber (pectin), with six replicates of four hens each.
View Article and Find Full Text PDFDig Dis Sci
January 2025
Division of Gastroenterology, University of California, San Francisco, CA, USA.
Background: Pouchitis is common among patients with ulcerative colitis (UC) who have had colectomy with ileal pouch-anal anastomosis. Antibiotics are first-line therapy for pouch inflammation, increasing the potential for gut colonization with multi-drug resistant organisms (MDRO). Fecal microbial transplant (FMT) is being studied in the treatment of pouchitis and in the eradication of MDRO.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Coloproctology Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Background: Data from observational and clinical studies indicate an association between skin microbiota and hidradenitis suppurativa (HS). However, the causal relationship between skin microbiota and HS remains to be elucidated.
Methods: We obtained data on skin microbiota and HS from summary statistics of genome-wide association studies and applied Mendelian randomization (MR) statistical methods to assess causality.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!