Tall fescue, the predominant southeastern United States cool-season forage grass, frequently becomes infected with an ergot alkaloid-producing toxic endophyte, Consumption of endophyte-infected fescue results in fescue toxicosis (FT), a condition that lowers beef cow productivity. Limited data on the influence of ergot alkaloids on rumen fermentation profiles or ruminal bacteria that could degrade the ergot alkaloids are available, but how FT influences the grazing bovine fecal microbiota or what role fecal microbiota might play in FT etiology and associated production losses has yet to be investigated. Here, we used 16S rRNA gene sequencing of fecal samples from weaned Angus steers grazing toxic endophyte-infected (E+;  = 6) or nontoxic (Max-Q;  = 6) tall fescue before and 1, 2, 14, and 28 days after pasture assignment. Bacteria in the and phyla comprised 90% of the Max-Q and E+ steer fecal microbiota throughout the trial. Early decreases in the family and delayed increases of the and families were among the major effects of E+ grazing. E+ also increased abundances within the , , and phyla and the family. Multiple operational taxonomic units classified as and were correlated negatively with weight gains (lower in E+) and positively with respiration rates (increased by E+). These data provide insights into how E+ grazing alters the Angus steer microbiota and the relationship of fecal microbiota dynamics with FT. Consumption of E+ tall fescue has an estimated annual $1 billion negative impact on the U.S. beef industry, with one driver of these costs being lowered weight gains. As global agricultural demand continues to grow, mitigating production losses resulting from grazing the predominant southeastern United States forage grass is of great value. Our investigation of the effects of E+ grazing on the fecal microbiota furthers our understanding of bovine fescue toxicosis in a real-world grazing production setting and provides a starting point for identifying easy-to-access fecal bacteria that could serve as potential biomarkers of animal productivity and/or FT severity for tall fescue-grazing livestock.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643230PMC
http://dx.doi.org/10.1128/AEM.00032-19DOI Listing

Publication Analysis

Top Keywords

fecal microbiota
24
tall fescue
16
fecal
8
grazing
8
grazing toxic
8
predominant southeastern
8
southeastern united
8
united states
8
forage grass
8
fescue toxicosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!