Background: Human natural killer (NK) cell lines serve as an attractive source for adoptive immunotherapy, but NK-92 remains the only cell line being assessed in the clinic. Here, we established a novel NK cell line, NK101, from a patient with extra-nodal natural killer/T-cell lymphoma and examined its phenotypic, genomic and functional characteristics.
Methods: Single cell suspensions from lymphoma tissue were expanded with anti-NKp46/anti-CD2-coated beads in the presence of IL-2. A continuously growing CD56 cell clone was selected and designated as NK101. Flow cytometry and RNA sequencing were used to characterize phenotypic and genomic features of NK101. In vitro cytotoxicity and IFN-γ/TNF-α secretion were measured by flow cytometry-based cytotoxicity assay and enzyme-linked immunosorbent assay, respectively, after direct co-culture with tumor cells. Immunomodulatory potential of NK101 was assessed in an indirect co-culture system using conditioned medium. Finally, in vivo antitumor efficacy was evaluated in an immunocompetent, syngeneic 4T1 mammary tumor model.
Results: NK101 displayed features of CD56CD62L intermediate stage NK subset with the potential to simultaneously act as a cytokine producer and a cytotoxic effector. Comparative analysis of NK101 and NK-92 revealed that NK101 expressed lower levels of perforin and granzyme B that correlated with weaker cytotoxicity, but produced higher levels of pro-inflammatory cytokines including IFN-γ and TNF-α. Contrarily, NK-92 produced greater amounts of anti-inflammatory cytokines, IL-1 receptor antagonist and IL-10. Genome-wide analysis revealed that genes associated with positive regulation of leukocyte proliferation were overexpressed in NK101, while those with opposite function were highly enriched in NK-92. The consequence of such expressional and functional discrepancies was well-represented in (i) indirect co-culture system where conditioned medium derived from NK101 induced greater proliferation of human peripheral blood mononuclear cells and (ii) immunocompetent 4T1 tumor model where peritumoral injections of NK101 displayed stronger anti-tumor activities by inducing higher tumor-specific immune responses. In a manufacturing context, NK101 not only required shorter recovery time after thawing, but also exhibited faster growth profile than NK-92, yielding more than 200-fold higher cell numbers after 20-day culture.
Conclusion: NK101 is a unique NK cell line bearing strong immunostimulatory potential and substantial scalability, providing an attractive source for adoptive cancer immunotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6534912 | PMC |
http://dx.doi.org/10.1186/s40425-019-0612-2 | DOI Listing |
Oncoimmunology
December 2022
SL BiGen, Inc., Research Institute, Incheon, Republic of Korea.
Clonal cell line-based, multigene-modified, off-the-shelf NK cell therapeutics are emerging as the new frontier of adoptive cellular immunotherapy. Here, we utilized a newly established NK cell line, NK101, as a backbone to derive multifaceted killer cells armored with various antitumor modalities through repeated cycles of genetic modification and clonal selection. First, NK101 cells were transduced with a tricistronic lentiviral vector expressing CD7, CD28, and cytosine deaminase (CD).
View Article and Find Full Text PDFJ Immunother Cancer
May 2019
SL-BIGEN Inc., 700 Daewangpanyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea.
Background: Human natural killer (NK) cell lines serve as an attractive source for adoptive immunotherapy, but NK-92 remains the only cell line being assessed in the clinic. Here, we established a novel NK cell line, NK101, from a patient with extra-nodal natural killer/T-cell lymphoma and examined its phenotypic, genomic and functional characteristics.
Methods: Single cell suspensions from lymphoma tissue were expanded with anti-NKp46/anti-CD2-coated beads in the presence of IL-2.
Biochem Pharmacol
February 1989
Department of Biochemistry, Oita Medical School, Japan.
Synthetic dihydropyridine analogs were screened to determine whether they would reverse multidrug resistance of a multidrug-resistant human KB carcinoma cell line, KB-C1. Among twenty-four dihydropyridine analogs examined, thirteen almost completely overcame drug resistance (group A), nine partially overcame resistance (group B) and two did not reverse resistance (group C). The twenty-two compounds that reversed drug-resistance (groups A and B) were hydrophobic dihydropyridine derivatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!