Life Cycle Assessment (LCA) tool can be used for environmental assessment of Municipal Solid Waste Management (MSWM) system. The present study aims to evaluate the impact of MSWM system in Nagpur city, India under four different scenarios. i.e., composting combined with landfilling (S1), material recovery facility (MRF) & composting combined with landfilling (S2), MRF & anaerobic digestion (AD) combined with landfilling (S3) and MRF, AD & composting combined with landfilling (S4) using LCA tool. The sensitivity analysis was also performed for evaluating the influence of recycling rate of valuable resources in all the considered scenarios. The scenarios were compared using Gabi 8.5.0.79 model and CML-1A impact characterization method. S2 was found to have the least environmental impacts on global warming, human toxicity, eutrophication, and photochemical ozone creation potential categories. The sensitivity analysis indicated an inversely proportional relation between change in recycling rate and total environmental burdens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2019.121515DOI Listing

Publication Analysis

Top Keywords

combined landfilling
16
composting combined
12
life cycle
8
cycle assessment
8
assessment municipal
8
municipal solid
8
solid waste
8
waste management
8
lca tool
8
mswm system
8

Similar Publications

Combination of anaerobic digestion and sludge biochar for bioenergy conversion: Estimation and evaluation of energy production, CO emission, and cost analysis.

J Environ Manage

January 2025

Bioenergy Research Institute - IPBEN, UNESP, Institute of Chemistry, Araraquara, SP, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Campus Araraquara, Department of Engineering, Physics and Mathematics, Rua Prof. Francisco Degni, 55, 14800-900, Araraquara, SP, Brazil. Electronic address:

Waste-to-energy technologies involve the conversion of several wastes to useful energy forms like biogas and biochar, which include biological and thermochemical processes, as well as the combination of both systems. Assessing the economic and environmental impacts is an important step to integrate sustainability and economic viability at anaerobic digestion systems and its waste management. Energy production, CO emissions, cost analysis, and an overall process evaluation were conducted, relying on findings from both laboratory and pilot-scale experiments.

View Article and Find Full Text PDF

Biomass valorization and bio-based material development are of major research interest following the spirit of the circular economy. Aloe vera cultivation is a widespread agricultural activity oriented toward supplement production because of its well-known antioxidant and antimicrobial properties. Aloe vera juice production also produces a large amount of biomass byproducts that are usually landfilled.

View Article and Find Full Text PDF

Sulfur autotrophic denitrification (SAD) is a promising technology for nitrogen removal, particularly suitable for low carbon-to-nitrogen wastewater without additional carbon sources. However, SAD inevitably generates significant amounts of SO. To address this issue, combining SAD with iron-carbon micro-electrolysis technology, which can reduce sulfate, provides electron donors for autotrophic denitrification and facilitates sulfur cycling.

View Article and Find Full Text PDF

Domestic waste treatment is an important source of anthropogenic greenhouse gas emissions, and it is of great significance to clarify the carbon emission intensity of each link before and after waste classification treatment to help with the "double carbon" goal. Based on the relevant data on domestic waste generation in Baoji City in 2021, combined with the integrated urban and rural domestic waste disposal model, the carbon emission intensity of urban and rural domestic waste treatment before and after classification was calculated using the IPCC inventory guide carbon emission factor method. The results showed that by reducing the proportion of simple landfills in rural areas, the carbon reduction could reach 59 451.

View Article and Find Full Text PDF

Enrichment of a heterotrophic nitrifying and aerobic denitrifying bacterial consortium: Microbial community succession and nitrogen removal characteristics and mechanisms.

Bioresour Technol

December 2024

Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China. Electronic address:

This study cultivated a bacterial consortium (S60) from landfill leachate that exhibited effective heterotrophic nitrification and aerobic denitrification (HN-AD) properties. Under aerobic conditions, the removal of NH-N reached 100 % when the S60 consortium utilised NH-N either as the sole nitrogen source or in combination with NO-N and NO-N. Optimal HN-AD performance was achieved with sodium acetate as a carbon source and a pH of 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!