Predictive Value of Transforming Growth Factor-α and Ki-67 for the Prognosis of Skull Base Chordoma.

World Neurosurg

Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Anshan Central Hospital, Anshan, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. Electronic address:

Published: September 2019

Objective: We aimed to characterize the expression of transforming growth factor-α (TGF-α) and Ki-67 and to assess the relationship between TGF-α and Ki-67 expression and prognostic factors in skull base chordoma.

Methods: We retrospectively analyzed the data from 46 patients with skull base chordoma. The follow-up duration ranged from 1 to 168 months (mean, 74.1). The survival data were statistically analyzed using the Kaplan-Meier method and multivariate Cox regression analysis. The expression of TGF-α and Ki-67 were detected by immunohistochemical staining of paraffin-embedded patient tissue specimens.

Results: The total resection (TR) group had longer overall survival compared with the non-TR group (P = 0.042). The TR group also had longer progression-free survival (PFS) than did the non-TR group (P = 0.046). The group with a high Ki-67 labeling index (Ki-67LI) had shorter overall survival than did the group with a low Ki-67LI (P = 0.039). Also, the group with a high Ki-67LI had significantly shorter PFS than did the group with a low Ki-67LI (P = 0.016). Moreover, the group with high TGF-α expression had significantly shorter PFS compared with the group with low TGF-α expression (P = 0.005).

Conclusions: Our results have shown that high levels of TGF-α and Ki-67 are associated with shorter PFS in patients with chordoma. We have confirmed the role of Ki-67 as a functional molecular marker of poor prognosis. We also identified TGF-α as a potential novel biomarker for predicting prognosis for patients with skull base chordoma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2019.05.110DOI Listing

Publication Analysis

Top Keywords

skull base
16
tgf-α ki-67
16
base chordoma
12
group high
12
group low
12
shorter pfs
12
group
10
transforming growth
8
growth factor-α
8
patients skull
8

Similar Publications

Artificial Intelligence, Machine Learning and Big Data in Radiation Oncology.

Hematol Oncol Clin North Am

January 2025

Division of Head and Neck/Skull Base, Department of Radiation Oncology, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, 460 West 10th Avenue, Columbus, OH 43210, USA. Electronic address:

This review explores the applications of artificial intelligence and machine learning (AI/ML) in radiation oncology, focusing on computer vision (CV) and natural language processing (NLP) techniques. We examined CV-based AI/ML in digital pathology and radiomics, highlighting the prospective clinical studies demonstrating their utility. We also reviewed NLP-based AI/ML applications in clinical documentation analysis, knowledge assessment, and quality assurance.

View Article and Find Full Text PDF

Head pose-assisted localization of facial landmarks for enhanced fast registration in skull base surgery.

Comput Med Imaging Graph

December 2024

School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, Beijing, PR China; Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou, 450000, Henan, PR China. Electronic address:

In skull base surgery, the method of using a probe to draw or 3D scanners to acquire intraoperative facial point clouds for spatial registration presents several issues. Manual manipulation results in inefficiency and poor consistency. Traditional registration algorithms based on point clouds are highly dependent on the initial pose.

View Article and Find Full Text PDF

Background: Collision sellar tumors are rare disease entities. Less than 30 cases have been reported in the literature in the last 20 years. We present the case of one patient diagnosed with a collision sellar tumor and describe the use of Enhanced Contact Endoscopy for pituitary gland and tumoral identification not previously described in the literature.

View Article and Find Full Text PDF

Background: Meningioma is the most common primary intracranial tumor. This single-center study aimed to analyze the clinicopathological, radiological profile, and outcomes of patients with intracranial meningiomas in terms of functional status, morbidity, mortality, and recurrence-free survival (RFS).

Methods: Patients of intracranial meningioma treated between January 01, 2010, and December 31, 2019, at the Department of Neurosurgery, King George's Medical University, India, were included in this study.

View Article and Find Full Text PDF

Background: Petroclival meningiomas are still a neurosurgical challenge due to their proximity to cranial nerves and cerebral vasculature along the surgical corridor. The usual extension of large petroclival meningiomas is along the posterior fossa, frequently compromising and displacing adjunct cranial nerves such as the sixth and seventh-eight cranial nerve complex with brainstem compression, causing progressive neurological deficit and severe headache. The goal of sizeable petroclival meningioma surgery treatment is a maximal resection with preservation of neurological function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!